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ABSTRACT
Mobile sensing plays a crucial role in generating digital traces
to understand human daily lives. However, studying behaviours
like mood or sleep quality in smartphone users requires carefully
designed mobile sensing strategies such as sensor selection and
feature construction. This process is time-consuming, burdensome,
and requires expertise in multiple domains. Furthermore, the re-
sulting sensing framework lacks generalizability, making it difficult
to apply to different scenarios. In the research, we propose an auto-
mated mobile sensing strategy for human behaviour understanding.
First, we establish a knowledge base and consolidate rules for data
collection and effective feature construction. Then, we introduce
the multi-granular human behaviour representation and design pro-
cedures for leveraging large language models to generate strategies.
Our approach is validated through blind comparative studies and
usability evaluation. Ultimately, our approach holds the potential
to revolutionise the field of mobile sensing and its applications.
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1 INTRODUCTION
The development of the Internet of Things (IoT) has transformed
how we capture and analyze digital traces of daily life. Mobile sens-
ing, a form of passive sensing using smartphone sensor data, plays a
crucial role in this transformation. By leveraging data from software
and hardware sensors, mobile sensing provides a comprehensive
understanding of human behaviours [10, 36, 40]. Compared to wear-
able and environmental sensing, mobile sensing offers unobtrusive,
long-term data collection in real-world settings, reducing user bur-
den and providing convenience without additional devices [23].
Additionally, multiple sensors in mobile devices yield rich, diverse
data, facilitating a contextual understanding of the surroundings.

Recently, mobile sensing has become popular for understanding
human behaviours, such as affective states [36], academic perfor-
mance [38], life satisfaction [42], and personality [10]. It serves as
an effective Quantified-Self tool [24] to enhance self-awareness
and well-being, with applications in health monitoring and per-
sonalized services. For example, Gao et al. [10] predicted Big-5
personality traits using call logs, message logs, and accelerometer
data. Wampfler et al. [36] predicted affective states using touch and
IMU data. Wang et al. [38] used activity, conversational interaction,
and mobility data to predict college students’ GPA.
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However, understanding human behaviours through mobile
sensing presents significant challenges, especially for complex be-
haviours like well-being and personality traits. One one hand, re-
searchers need a deep understanding of relevant domain knowl-
edge (e.g., psychology [10, 15], medicine [29], education [9, 38])
to extract pertinent features effectively. Expertise in sensor com-
binations, battery optimization, device settings, and data-driven
modeling is essential for accurate models. For instance, a study
on social functioning in individuals with schizophrenia [40] used
various mobile sensing data types and extracted features related
to social functioning, highlighting the need for domain knowledge
and machine learning skills.

On the other hand, traditional mobile sensing studies often focus
on specific research objectives (e.g., measuring depression during
COVID-19 [28], identifying time-killing moments on smartphones
[3], predictingweekend nightlife drinking behaviour [26]), resulting
in frameworks that lack generalizability. This makes it challenging
to apply them to different scenarios and participants, especially
with minor variations in sensor usage.

Therefore, we aim to explore the automation of mobile sensing
strategies for dynamic research objectives. While automation has
been implemented in traditional modeling tasks (e.g., AutoML [17]
and Auto-Sklearn [6]), most focus on traditional tabular data rather
than mobile sensing settings and do not effectively utilize semantic
information. Our research questions are: 1. What specific types
of data should be collected to achieve different research objectives
using mobile sensing technologies? 2. How can the collected data be
effectively utilized to generate meaningful features that align with
the research objective? 3. Which models can be utilized, and what is
the estimated performance based on the research objective?

To address these questions, we propose an automated mobile
sensing strategy generation system. We reviewed mobile sensing
studies from top venues, building a knowledge base. From this,
we consolidated rules for feature construction, sensor selection,
and model suggestions. We also developed a multi-granular human
behavior decomposition mechanism to understand behaviors at
varying levels. Large Language Models (LLMs) were utilized in five
steps of strategy generation. The system outputs automated mobile
sensing strategies that dynamically respond to user inquiries. Our
contributions are as follows:

• We establish a mobile sensing knowledge base from 55 stud-
ies in reputable venues such as CHI and IMWUT, identifying
rules for effective feature construction and sensor selection.

• We develop a multi-granular human behaviour represen-
tation mechanism for understanding behaviours in mobile
sensing settings, aiding in effective feature construction.

• We propose an automated mobile sensing strategy that pro-
vides suggestions for data selection, feature construction,
model building and performance estimation.

2 RELATEDWORKS
2.1 Modelling Human Behaviours using Mobile

Sensing Technologies
Mobile sensing technologies revolutionize understanding human
behavior, enabling predictions of personality traits [10], depression
[41], stress-resilience [1], social anxiety [30], and schizophrenia

[39]. They also explore links with alcohol consumption [26], be-
havior post-promotion [27], time-killing on smartphones [3], and
notification response time [13]. Capturing real-time data in natural
settings, mobile sensing offers unprecedented insights into human
life.

While mobile sensing infers various aspects of human behavior,
each requires comprehensive study design, data collection, and
feature construction. Researchers typically invest significant time
in these areas. Traditionally, data is collected via background apps
(e.g., SensingKit [20], AWARE [5], AWARE-Light [35], CARP [2]),
but excessive data collection poses challenges like unused data, bat-
tery drain, and privacy concerns, reducing participant willingness
and requiring extensive post-processing [35]. Limited data collec-
tion, however, restricts understanding due to budget and ethical
constraints. We propose RQ1 to optimize data collection.

Feature engineering, creating new features from raw data [22], is
time-consuming and requires multi-domain expertise. Effective fea-
tures enhance model performance, while poor features yield poor
results. Traditional features, like statistical measures [4], have lim-
ited effectiveness due to human behavior’s complexity. We propose
RQ2 to enable automated feature construction, reducing reliance on
human expertise and streamlining data collection by rationalizing
sensor data selection.

Accurate prediction models are essential for understanding be-
havior, approached through regression [9, 10, 40] or classification
[3, 25]. Traditional models include Random Forest (RF) [33], Gradi-
ent Boosting (GB) [7], and Naive Bayes (NB) [31]. Neural networks
and deep learning are limited by small participant samples. Re-
searchers need to estimate model performance before studies. We
propose RQ3 to help identify suitable models, understand expected
performance, aid informed decisions, and recognize prediction lim-
itations.

2.2 AutoML and Large Language Models
Auto Machine Learning (AutoML) [17] offers automated solutions
for identifying efficient machine learning pipelines, with notable
successes including AutoSklearn [6], Auto-WEKA [21], and Auto-
Pytorch [18]. However, these focus on traditional features, overlook-
ing semantic information. Large Language Models (LLMs) excel in
natural language processing [34], encapsulating a wealth of domain
knowledge. Hollmann [14] proposed CAAFE, leveraging LLMs for
semantically meaningful feature engineering from dataset descrip-
tions, but focused on simple tabular data. Applying such methods to
complex sensing data and human behavior research remains under-
explored. The prevalence of LLMs has opened up new possibilities
for understanding human needs by exploring behavior-related vari-
able correlations. Their embedded domain knowledge can automate
data science tasks involving intricate contextual information. This
intersection of AutoML and LLMs presents a promising direction
for future research.

3 METHODOLOGY
3.1 Construction of Knowledge Base
We focused on papers using only mobile sensing, excluding other
sources like wearables, to construct our knowledge base. We se-
lected articles from top venues in mobile sensing and ubiquitous
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Table 1: An overview of features components summarised
from the knowledge base

Component Category Descriptions Example values

Time span Duration Daily epoches Morning, afternoon, night
Past to present In the last 30 minutes

Periodicity Recurrence Daily, weekly, monthly

Metrics

Statistical

Central tendency Mean, median, mode
Dispersion Standard deviation, variance, range
Shape Skewness, kurtosis
Direct Temperature, screen on state, location

Others Count, magnitude, sum, slope, max, min
frequency, ratio, proportion

Regularity Regularity Mean Squares Successive Difference (MSSD),
regularity index, consistency score

Circadian rhythms Same as above

Relation Correlation Pearson, Spearman, Kendall tau correlation
Ranking The most frequent place visited

Diversity Diversity of values Shannon entropy
Similarity Similarity Cosine, Jaccard, Hamming distance
Spatial Spatial Distance, density, location
Temporal Temporal Duration, frequency, trend

Other Other measures Fast Fourier Transform (FFT),
Mel Frequency Cepstral Coefficient (MFCC)

computing: CHI (Conference on Human Factors in Computing Sys-
tems) and IMWUT (Proceedings of the ACM on Interactive, Mobile,
Wearable, and Ubiquitous Technologies). The selection process in-
cluded: 1. Accessing the ACM advanced search website 1. 2. Search
Within: ‘Title’ = (mobile OR smartphone) AND (sensing OR sensors
OR sensor OR sense) NOT (wearable OR wristband OR desktop
OR wrist-worn OR environmental OR environment OR laptop) 3.
Apply the filters successively to ensure the inclusion of relevant
research articles: a) Select ‘UbiComp: Ubiquitous Computing’ AND
‘Research Article’. b) Select ‘CHI: Conference On Human Factors In
Computing Systems’ AND ‘Research Article’. c) Select ‘Proceedings
Of The ACM On Interactive, Mobile, Wearable And Ubiquitous
Technologies’ AND ‘Research Article’ In total, we collected 121
papers: 42 from IMWUT, 22 from CHI, and 57 from Ubicomp. After
meticulous review, we retained 55 papers that exclusively used
mobile sensing and focused on human behaviour.

3.2 Overview of Data Sources
From the reviewed papers, we identified commonly used sensors
for mobile sensing studies, excluding those used in fewer than
two papers due to potential data collection difficulties. We also
standardized the names of data sources for consistency. The most
commonly used sensors are:

• Hardware Sensors. Integral components in mobile devices
that monitor physical activities. Common sensors include:
[Accelerometer, Gyroscope, Light, Magnetometer, Gravity, Tem-
perature, Humidity, Orientation, Barometer, Proximity, Micro-
phone, Bluetooth, WiFi].

• Software Senors. Derived from hardware sensors combined
with software models to deduce new variables. Common

1https://dl.acm.org/search/advanced
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Figure 1: Multi-granular human behaviour representation

sensors include: [Application, Calls, Message, GPS/Location,
Notification, Keyboard].

• Contextual Information. Provides insight into the sur-
rounding environment or circumstances of device usage,
essential for understanding user behaviour and preferences.
Common data includes: [Screen, Time, Date, Battery].

3.3 Overview of Features
Our review of the 55 studies revealed inconsistencies in feature
construction. Some studies relied solely on statistical features, while
others incorporated meaningful features but lacked organized gran-
ularity of human behaviour. Time spans were often inconsistently
applied or not mentioned at all. This area lacks a clear principle for
designing effective features.

After analyzing current mobile sensing studies, we found that
effective features for human-centered mobile sensing typically con-
sist of three components: the time span of the sensing data, the
metrics used for measurements, and the specific human behaviours
being studied. For instance, the feature "Duration of screen time per
weeknight" includes the metric "Duration of time", the atomic be-
haviour "screen" and the time span "weeknight". Table 1 summarizes
commonly used time spans and metrics.

3.4 Model and Performance
Analysis of 55 mobile sensing studies shows that most research uses
similar machine learning models: Random Forest, Gradient Boosting
Machine, Linear Regression, Gaussian Mixture Model, Support Vector
Machine, Naive Bayes, K-nearest Neighbour, and Logistic Regression.
Somemodels, like Random Forest andGradient Boosting, handle com-
plex relationships well, making them robust for high-dimensional
data. The primary goal of using these models is to evaluate the
effectiveness of features in predicting research objectives. However,
providing recommendations on model choice is useful. Knowing
the approximate performance level for the research objective helps
guide researchers’ expectations and decisions.

4 MULTI-GRANULAR HUMAN BEHAVIOUR
REPRESENTATION

Understanding human behaviours deeply is key to effective feature
construction and successful mobile sensing studies. Translating
sensing signals, smartphone usage, and context descriptors into
specific human behaviours (e.g., emotion, alcohol consumption) re-
mains challenging due to the complex nature of human behaviours
[8, 12]. Many studies overlook this aspect, extracting data like sta-
tistical features or trajectory data without considering the broader
context. This not only wastes time but also fails to cover all facets
of human behaviour comprehensively.

Human behaviour refers to the potential and expressed capac-
ity for physical, mental, and social activity in response to internal

https://dl.acm.org/search/advanced
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and external stimuli throughout life [19]. It has been explored by
various fields such as psychology, sociology, ethology, and human-
centered design. While there are many facets of human behaviour,
no single definition or field of study can encapsulate its entirety. For
example, behaviour can be decomposed by temporal phases (pre-
natal life, infancy, childhood, adolescence, adulthood, and old age)
[19], reactive modes (reactive and deliberative behaviours) [32], or
dimensions (actions, cognition, and emotion). To capture human
behaviours through smartphones, we propose a multi-granular hu-
man behaviour representation mechanism. This mechanism serves
as a foundation for constructing meaningful features in mobile
sensing research. It comprises four dimensions that encompass hu-
man behaviours at varying levels of granularity: contexts, activities,
categories, and traits (see Figure 1).

• Context: This level includes information directly inferred
or easily calculated from smartphone sensors, such as lo-
cation/trajectory (GPS), physical activity (Android Activity
Recognition API 2), time, and screen usage.

• Activity: This level identifies specific activities or behaviours
exhibited by individuals, such as sending emails, swimming,
or listening to music.

• Category: At this level, similar behaviours are grouped based
on shared characteristics or attributes, allowing the iden-
tification of commonalities and patterns. Categories may
include entertainment, exercise, communication, and social
activities.

• Trait: This level considers enduring characteristics or traits
intrinsic to individuals, reflecting their behaviour patterns,
such as personality traits, social abilities, leadership, and
loneliness.

For example, to investigate someone’s mood instability (a trait),
we can identify relevant categories like stress, happiness, and sad-
ness. Within these categories, activities contributing to mood fluctu-
ations might include work-related tasks, spending time with loved
ones, or engaging in hobbies. At the context level, we can exam-
ine specific atomic activities like using the smartphone, opening
social media apps, texting, and going to bed. By considering these
different levels of granularity—from traits to categories to activities
and contexts—we can construct a comprehensive representation
of human behaviour, enabling a deeper understanding of complex
phenomena like mood instability.

5 AUTOMATED MOBILE SENSING
FRAMEWORK

5.1 Design Rules for Mobile Sensing Strategies
To achieve effective mobile sensing strategies, we follow five steps
(see Figure 5). The system outputs the strategy based on the user’s
inquiry after these steps.

5.1.1 Information Extraction (Step 1). The user initiates an inquiry,
such as "I wish to understand the mood instability of this user during
the night." The system extracts the research objective, which in
this case is "mood instability during the night". Next, the system
defines the level of human behaviour (trait, category, activity, or
2Android Activity Recognition API: https://developers.google.com/location-context/
activity-recognition

Inquiries

“I wish to understand the 
mood instability of this 
user during the night.”

Information Extraction

Research Objective:
mood instability 
during the night 

(trait level)

Human Behaviour Representation

Stress, happiness, sadness…
Spending time with loved ones,
Engage in hobbies…
At home, use social media app，
text messages, go to bed… 

Accelerometer, GPS, 
application (social 
media), messages, 

screen, date, time…  

Data Selection

Models:  random forest 
regressor

Performance: the 
performance may be…

Model select & 
Performance Estimate

Avg number of text message per night, 
Duration of screen time per weeknight, 
Regularity of sleep start time over the 

past two weeks…

Feature Construction

LLM Driven Rule Based

Metrics: avg, RI...
Behaviours: mobility...
Time Span: epochs...

Feature Rules

Hardware: Acc, Gyro…
Software: App, Noti...
Contextual: Battery..

Sensor Lists

Knowledge
base

Multi-granular
behaviour

mechanism

Figure 2: The generation process of mobile sensing strategies
involves two main data flows: the user’s inquiry in natural
language (green arrows) and the designed rules (yellow ar-
rows). These flows merge to produce the final mobile sensing
strategies.

context) based on the multi-granular human behaviour mechanism
described in Section 4. Since "mood instability during the night" is
an intrinsic trait affecting behaviour patterns, it is considered at
the trait level.

5.1.2 Human Behavior Representation (Step 2). The system extracts
multi-granular behaviours based on the objective, moving hierar-
chically from category to activity and context levels. Context-level
behaviours are inferred from smartphone sensing data, using sensor
lists from the knowledge base to generate relevant behaviours.

5.1.3 Feature Construction (Step 3). The system constructs com-
prehensive features for modeling the research objective. Effective
features consist of the time span of the data, measurement metrics,
and specific behaviours. Using context-level behaviours from Step
2, the system selects appropriate metrics and time spans. For in-
stance, a feature for "mood instability during the night" could be the
"regularity of sleep start time over the past two weeks".

5.1.4 Data Selection (Step 4). The system determines the data to
compute the features from Step 3. The sensing data source is se-
lected from the identified sensors in Section 3.2, including hardware,
software sensor data, and contextual information. For example, the
feature "regularity of sleep start time" requires time and sleep data,
identified using sensors like the accelerometer and gyroscope.

5.1.5 Model and its Estimated Performance (Step 5). The system
suggests a machine learning model based on the research objective,
selected data sources, and constructed features. Good features en-
hance performance, while limited data sources may hinder accuracy.
The system estimates performance using natural language and pro-
vides reasoning. For example, modeling psychological traits may
result in lower performance due to their complexity and variability.

5.2 Prompt Structure
Our prompt structure, inspired by [37], consists of three main com-
ponents: (1) Prefix. A clear and concise introduction outlining the
prompt’s purpose and design rules, as detailed in Section 5.1, provd-
ing a high-level overview and sets the context for the examples
that follow. (2) Examples. Each example is divided into three parts:

https://developers.google.com/location-context/activity-recognition
https://developers.google.com/location-context/activity-recognition
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Inquiry

Reasoning

Strategies

LLM

Inquiry

Example 1 Example 2 User Input

Strategies

Inquiry

Reasoning

Strategies

Purpose

Design rules

Prefix Output

System settings Output

Reasoning

User Input

System: You are a research assistant, please strictly follow the instructions and
examples to convert the natural language expression of the "user query" input into
a "mobile awareness strategy".
===Design Rules===
STEP 1...

User: I wish to understand the mood instability of the user during the night.

Assistant: 
<Generated Strategy> 
*Data sources to be collected* [Accelerometer, Gyroscope, GPS/Location, 
Application, Calls, Message, Screen, Time, Battery, Sound, Notification]
<Reasoning>
...

Figure 3: An example illustrating the proposed prompt struc-
ture

a) Inquiry. Presents a natural language inquiry to enhance under-
standing, such as, "I wish to understand the mood instability of this
user during the night." b) Reasoning. Explains the reasoning behind
each design decision with step-by-step justifications, following the
design rules. c) Mobile Sensing Strategy. Outlines the chosen strate-
gies, specifying data to be collected and features to be constructed.
(3) User Input. Users provide their own inquiry related to their
objective, expressed in natural language.

This approach provides a comprehensive framework that guides
LLMs in reasoning and formulating mobile sensing strategies based
on the given inquiries. The number of examples can be adjusted
according to user requirements. Figure 3 shows an example of our
prompt structure.

6 EVALUATION
In our experiment, we used GPT-3.5-turbo for its robust capabilities
in generating coherent, context-rich responses to complex prompts.
Users initiated interactions with the model using a prefixed indi-
cator "INPUT". For example, a researcher wishing to model mood
instability could type: INPUT: I wish to understand the mood insta-
bility of the user during the night.

6.1 Expert Evaluators
Unlike typical user studies that rely on easily recruited ordinary
participants, our research targets experts in the field of mobile
sensing to provide valuable insights into human behaviours. We
enlisted 8 experts with significant experience in modeling human
behaviours using mobile sensing technologies, averaging 4.25 years
of research experience. Although the number of evaluators is lim-
ited, their profound understanding of mobile sensing techniques
provides substantial insights into the system.

6.2 Procedure
We conducted two evaluation studies: a comparative study and a
usability study. The comparative study evaluated the effectiveness
of the automated mobile sensing strategy against existing strategies,
using the Blind Comparison method [11]. In the usability study,

experts typed any inquiry they wanted and then completed a survey
and participated in an interview.

6.2.1 Comparative Study. For the comparative study, we selected
two highly cited mobile sensing tasks (over 100 citations). We ex-
tracted research objectives, selected data sources, and constructed
features based on existing descriptions, then applied our sensing
strategy generation system. To ensure fairness, we did not include
selected models and performance metrics. We maintained consis-
tent data and feature descriptions, excluding sensor details. The
primary difference between the existing and automated strategies
was the sensing data and features used.

Experts were presented with both existing and auto-generated
strategies in a randomized order to avoid Order Effects [11]. They
compared the strategies, assessing effectiveness, interpretability, rel-
evance, and completeness on a 5-point Likert scale from 1 (very neg-
ative) to 5 (very positive). This assessment was conducted through
semi-structured interviews, repeated for each expert until both
tasks were completed.

6.2.2 Usability Study. In this usability study, experts independently
used the automatic sensing strategies system. They typed inquiries
into the system to understand various human behaviours through
smartphones. The system generated strategies with a step-by-step
reasoning process, including data sources to be collected and fea-
tures to be constructed. We used an adapted NASA-TLX [16] evalua-
tion method to assess the generated strategies, excluding questions
on temporal demand or effort as the system required minimal wait-
ing time. Participants rated the following on a 5-point Likert scale,
with 1 being the most negative and 5 the most positive: (1) Men-
tal demand: How mentally demanding was the task? (2) Physical
demand: How physically demanding was the task? (3) Performance:
How successful were you in accomplishing what you planned to do?

Participants also evaluated their overall experience on a 5-point
Likert scale, with 1 indicating ’not at all’ and 5 indicating ’very
much’: (1) Satisfaction: How satisfied are you with the automated
generated strategy? (2) Enhanced Understanding: Does the auto-
mated strategy enhance your understanding of the research objective?
(3) Ease of use: How easy was the system to use? (4) Willingness to
reuse: How likely are you to use this assistant again in the future?

A concluding interview was conducted to gain deeper insights
into the experts’ thoughts on the automated mobile sensing strate-
gies, including the system’s effectiveness, its impact on their re-
search process, and suggestions for improvements.

6.3 Result and Discussion
6.3.1 Comparative Performance Analysis. We compared automated
and existing strategies in two studies: predicting Brain Functional
Connectivity (StudyA) and understandingCompound Emotion (Study
B). Figure 4 shows the results for effectiveness, interpretability, rele-
vance, and completeness based on expert opinions. The automated
strategy (’Auto’) consistently outperformed the existing strategy
(’Existing’) in all dimensions: Effectiveness: Auto 4.0 (STD = 0.37)
vs. Existing 2.88 (STD = 0.72). Interpretability: Auto 4.31 (STD =
0.60) vs. Existing 3.06 (STD = 0.77). Relevance: Auto 4.25 (STD =
0.58) vs. Existing 2.81 (STD = 0.54). Completeness: Auto 4.375 (STD
= 0.5) vs. Existing 3.375 (STD = 0.81).
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Figure 4: The evaluation results for both studies from experts
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Figure 5: Ratings for the automated mobile sensing strategy
from experts

Overall, the automated strategies outperformed the existing
strategies in all dimensions. However, Performance varied between
studies due to different research objectives. Study B’s reliance on
basic statistical features (e.g., "Longitude, Altitude, Latitude of GPS")
was less relevant compared to our proposed features (e.g., "Distance
travelled per day/weeknight").

Two experts raised concerns about the feasibility of computing
the proposed features, as they are more intricate than low-level
statistical features. However, most features can still be computed
usingmature algorithms. Three experts found the proposed features
insightful and beneficial for understanding user behaviour. For
example, Expert 2 noted, "I was pleasantly surprised to find that
application data were used in the automated strategy. Obviously, it
would be useful for understanding user brain function connectivity".

6.3.2 Usability Analysis. Experts tested the system independently
and evaluated based on seven dimensions:Mental Demand, Physical
Demand, Performance, Satisfaction, Enhanced Understanding, Ease
of Use, andWillingness to Reuse. As there are no existing automated
mobile sensing strategies for comparison, experts rated the sys-
tem directly on these dimensions. The usability ratings (Figure 5)
showed average values above 3 for all dimensions, indicating good
performance. Mental and physical demands were low, and experts
expressed a strong willingness to use the system for future research.

Experts may propose varying research objectives. While some
behaviours are easier to infer (e.g., smartphone addiction), others
are more challenging (e.g., heart attack). Despite this, 5 out of 8
experts found the generated strategies meaningful and expressed a
desire to use the system for designing their own experiments. Three
experts found the proposed features inspiring and valuable. For
instance, Expert 5 remarked, "I was pleasantly surprised to see that
application data was incorporated into the automated strategy. In-
cluding participants’ usage of grooming software would undoubtedly
make the experiment more comprehensive".

However, there was one case where an expert felt the system’s
performance was less satisfactory. This dissatisfaction arose from
their research objective, which focused on suggesting changes or
improvements in behaviour rather than understanding, modeling,
or predicting behaviours. Users should ensure that their research
objective aligns with understanding human behaviours through
mobile sensing. In another scenario, the strategy suggested the fea-
ture "The number of positive/negative messages sent per day", which
raised two primary concerns: potential violation of privacy rights
and ambiguity in distinguishing positive from negative messages.
While some generated sensors/features may be valuable, their real-
world applicability could be constrained. Further discussion can be
found in Section 7.

7 IMPLICATIONS AND LIMITATIONS
This research proposes an automatic generation system for mobile
sensing strategies to understand human behaviour. For researchers,
it reduces the burden of designing strategies, offers effective fea-
ture suggestions, and aids decision-making based on estimated
performance. The system can adapt to different research objectives,
providing tailored suggestions and experimental designs. For indi-
viduals, it enhances self-awareness by offering an objective method
to understand themselves through passive sensing data, potentially
improving well-being and quality of life.

However, this study has limitations. Firstly, not all devices have
the same sensors, and availability varies. For example, some devices
lack barometers or thermometers, and iOS devices generally have
more constraints than Android devices. Secondly, the study did
not cover parameter tuning and data cleaning, focusing instead
on data source selection, feature construction, model building, and
performance estimation. Tools like AutoML can manage parameter
tuning. Thirdly, the research centers on designing automatic mobile
sensing strategies without computing or implementing features.
The main contribution is strategy design, saving researchers time
and reducing the burden of data selection and feature construction,
paving the way for future studies. Lastly, privacy is a concern
when collecting data. Although this study does not involve actual
data collection, future researchers should implement necessary
privacy protection measures. Data processed for automated human
behaviour computation would be strictly protected and processed
on the user’s device, minimizing privacy concerns.

8 CONCLUSION
This paper introduces an automated mobile sensing strategy gener-
ation system that allows users to input inquiries related to under-
standing human behaviours through smartphones. This automation
reduces the burden on researchers and provides new insights for
mobile sensing strategy design. Future work will explore automatic
feature computation to develop intelligent systems that understand
human behaviour, ultimately assisting individuals in gaining self-
awareness and enhancing well-being.
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