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and frustration when delivered at inopportune timings. This paper investigates the effect of individuals’ smartphone usage
behavior and mood on notification response time. We conduct an in-the-wild study with more than 18 participants for five
weeks. Extensive experiment results show that the proposed regression model is able to accurately predict the response time
of smartphone notifications using current user’s mood and physiological signals. We explored the effect of different features
for each participant to choose the most important user-oriented features in order to to achieve a meaningful and personalised
notification response prediction. On average, our regression model achieved over all participants an MAE of 0.7764 ms and
RMSE of 1.0527 ms. We also investigate how physiological signals (collected from E4 wristbands) are used as an indicator for
mood and discuss the individual differences in application usage and categories of smartphone applications on the response
time of notifications. Our research sheds light on the future intelligent notification management system.
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1 INTRODUCTION
Smartphones, laptops, and desktop computers play an important role in human everyday lives. These devices
frequently send people notifications such as emails, messages, news, application update information, etc. Inappro-
priate interruptions can lead to user annoyance and anxiety [4], decrease productivity [47] and task performance
[3], or affect emotional state [4]. For instance, Perlow et al. [45] found that the software engineers in a high
technology company had difficulties meeting deadlines due to frequent interruptions. These examples highlight
the importance of interruption management as an emerging field of research to reduce distractions.
Human attention is a finite resource. When people perform a task, an interruption can split the attention

resource into two interactive tasks [26]. People need to estimate whether the benefits of the interrupted interaction
are high enough to offset the loss of attention in the original task. Different actions can be taken to deal with
interruptions, such as ignoring, postponing the processing to a more convenient time, or immediately resolving
the interruptions. Different measures may delay resuming the original task and reduce the task performance to
varying degrees [54].

Receptivity refers to a user’s reaction to an interruption which may indicate both the level of interruptibility of
the user and their experience of the interruption [14]. In some cases, even though the notification is interruptive,
the user can still be receptive to the notification. Previous studies have shown that users’ receptivity to notifications
is influenced by many factors: (1) informational qualities of the notifications, e.g. interest, entertainment, relevance
and actionability [14]; (2) mobile usage, such as the time of the interruption and the type of app pushing the
notification [14, 52] ; (3) demographics, such as personality traits [62]; (4) personal dynamics, such as location
[13], transitions between activities [23] and social roles [1].
However, we propose a system in a real-world scenario to help manage the automatic pop-up notifications

of frequently used smartphone applications, which has not been attempted by other researchers before. Users’
receptivity varies based on physical, psychological, and affective conditions , and the accuracy of existing systems
in addressing these conditions is still relatively low [33]. The difficulty of including these conditions can be
explained by an example : Users may get annoyed (psychological) if an email from their boss suddenly pops up
while they are concentrating on writing a paper and are in a state of ’flow’ (physical). However, it is not clear
how the user would feel (affect) if this email notifications were postponed. On the one hand, they may be relieved
at not being disturbed, but on the other hand, it could cause stress if they were waiting for important information
to help them with a problem they are experiencing.

Therefore, in this research, we aim to bridge this gap and conduct an in-the-wild study in a multi-device setting
to collect user behaviour along with contextual information, interruptibility, receptivity, mood and social roles
from more than 18 participants during five weeks. We have designed two applications, Balance for desktop and
Balance for Android, which use ESM [22] to capture users’ interruptibility preferences, user behavior, and mood
toward the notifications on smartphones. Meanwhile, participants are asked to wear a wristband to record their
physiological signals (Electrodermal Activity (EDA), Blood Volume Pulse (BVP), and Skin Temperature (ST)). We
summarize the main contributions as follows:

• We conduct an in-situ study with 27 participants over a five-week period. In total, we collected 42,270
notifications with 3,236 ESM responses and more than 5,920 hours of physiological signals from Empatica
E4 wristbands. To the best of our knowledge, this is the most heterogeneous and diverse data set collected
in-the-wild to study the notification response behaviour of users.

• We explore diverse notification response behaviours of different participants and investigate the relation-
ships between multiple factors (e.g. mood and apps) and notification response times. We found a statistically
significant correlation between response time and in-use apps.

• We conduct extensive experiments to predict the notification response time for each participant. The
experiment results show that the proposed model (Bayeian Rdige Regressor) achieves high prediction
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performance (MAE = 0.7764 and RMSE = 1.0527).We then derive themost useful features for each participant
to achieve a meaningful and personalised prediction of notification.

• We investigate how the mood-related features improve the prediction performance by utilising the ESM
responses and physiological signals (e.g. EDA and HR). We further discuss various factors affecting the
prediction performance, such as the individual differences and categories of apps.

The investigation of mood, physiological signals, and usage behaviour on users’ receptivity to notifications
on the smartphone leads to new sights to the future notification management system. The remainder of the
paper is as follows. Section 2 introduces related works of interruptibility management, receptivity and popular
mood sensing approaches. Section 3 describes the data collection procedures, including participant recruitment,
applications designed for data collection, Experience Sampling Method (ESM) questionnaires, and collected data
types. Then we introduce the pre-processing techniques and extracted features in Section 4. In Section 5, we
analyze notification response behaviours across different participants in various scenarios. Section 6 shows
the experimental results for predicting the notification response time, and Section 7 lists the limitations and
implications of this research. Finally, we summarize our findings in Section 8 and indicate the potential directions
in future research.

2 BACKGROUND

2.1 Interruptibility Management
We considered the current state of the art regarding response times. In this paper, we define response time as the
time that elapses between receiving a notification and opening the corresponding app.

Okoshi et al. [41] presented a system to detect opportune moments for interruptions based on click rate gain
using mobile sensing and ML methods. They calculated the user’s click response times by measuring the time
between a notification’s arrival and the response to the notification, i.e. click on the notification. This data was
logged along with contextual information from the smartphone and the data were evaluated. A trained linear
regression model then identified whether a moment in time was an opportune moment to display a notification
based on the extracted features. The adaptive notification component then delayed the presentation of notifications
to the user until an opportune moment was detected. This breakpoint-based notification scheduling system
resulted in increased click rates and quicker responses from users.
Saikia et al. [49], developed an optimization process to reduce the reaction time and increase the opening

rate of notifications for a mobile news application. Like Okoshi et al. [41] they defined the response time as the
time between receiving and opening notification and gathered additional context data (such as the category of
notification, time of the day, location, etc.). Also, the notification opening rate, which is similar to the click rate
[41], was used, to optimize the opening rate and minimize the response time. With their framework, Saikia et al.
reached a decreased reaction time by 13,3% and improved the opening rates by 65.24%.

Westermann et al. [61] have studied the significance of the context factor time, regarding the time of the day
and weekdays, on receptivity to notifications based on android smartphones. For this, they sent advertisement
notifications about popular brochures. The response time was set as the time between receiving a notification
and opening the app. Results exhibit notable variations in response times and notification-triggered app launch
numbers for weekdays and different time slots.

The authors [57] developed an application to log self-reported data on the significance of notification contents,
notification source, and delivered context to analyze the relationship between notification interaction choices and
content importance. They also collected data such as contextual information, notification content, time of delivery,
and whether the user clicked on the notification or dismissed it. Based on user ratings of past notifications,
contextual data, and semantic analysis, a predictive Machine Learning model is created to predict whether future
notifications are useful or not. The results showed that considering only interactions like click or dismiss ratios
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does not suffice to classify the importance of notification as users mostly tend to ignore notifications irrespective
of their importance. Using semantic analysis of notification content enhances the accuracy of the prediction
model.
The paper by Fortin et al.[15] highlights the correlation between skin conductance response (SCR) and the

prediction of the perception of smartphone notifications. To study the impact of user activity on the determined
signals, the participants were asked to perform an inactive (watch a wildlife documentary) and active (solve
paper mazes) task during the measurement. They were then directed to note the stimulus (sound or vibration of
the phone) that made them perceive the notification and press the corresponding buttons on a Pebble smartwatch
placed next to them. The experiments showed that notifications perceived because of their tactile properties
(vibration) stimulated larger skin conductance responses and SCR with higher amplitudes compared to those
perceived through auditory properties (sound). A logistic regression model was trained to examine if a perception
prediction method using skin conductance could aid notifications, including the smartphone’s ringer mode as a
predictor variable. This model successfully identified perception in 75% of true cases when participants perceived
the notification and 38% of missed notifications.

2.2 Receptivity
In [33], Mehrotra et al. study the effects of cognitive and physical contextual information on individuals’ recep-
tivity towards notifications. Lee et al. [28] investigate the correlation of individuals’ relationships to contacts
and contextual descriptors on the receptivity to mobile instant-messaging notifications. The authors find that
contextual descriptors such as the engagement in activities are more descriptive than the relationship to contacts
when predicting receptivity.

In this study [31], the authors have investigated the factors that make a smartphone notification disruptive
and its impact on the response time. An Android app called "my phone and me" was created. The application
uses Android’s Notification Listener Service to access notifications and Google’s Activity Recognition API and
ESSensorManager to receive context info. Apart from this, the app also triggers questionnaires every 4 hours
between 8 am and 8 pm. Reaction time is considered as the time from the notification arrival till the time it was
reacted upon. The modes of identifying notification (ringer or vibration) and the user’s personality traits were
also noted. The results showed that high-priority notifications were responded much faster, whereas those from
less frequent contacts were responded too late. Also, notifications are considered highly disruptive, when the
user was performing a task and least disruptive before starting a new task or being idle.

Züger et al. [64] predicted the interruptibility of 13 software developers on computer interaction, heart-, sleep-,
and physical activity-related data. They found that the interaction with a computer gives more information about
interruptibility than biometric data. However, using both data outperformed the results ahead.

2.3 Mood Sensing Approaches
Before we turn to papers in the area of Attention Management, let us give a definition of the term mood, which
is frequently used in this paper. Mood is a diffuse affective state that describes an individual’s subjective feeling
over a long time. Unlike emotions, mood lasts over hours or days, and the intensity is usually low. Most of the
time, we cannot assign a specific trigger to our mood, or to name a reason. Nonetheless, mood influences our
behavior and experiences [50].
Changes in activities, moods and behavior of users provide valuable insights on providing context-aware

services and minimizing unwanted interruptions. According to recent researches in psychology frequency of
changes or the rate of instability in different characteristics can affect the interruptability of users [8]. In the field
of Attention Management, different consequences were investigated. Among others, the influence of interruptions
on our mood. Zijlstra [63], for example, identified interruptions resulting in negative emotions. The counterpart
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is our mood as an internal stimulus, which results from our insights, and influences our interruptibility [9, 35].
Therefore, emotions and stress are not only consequences of interruptions but also influencing our interruptibility.

Yuan et al. [62] proposed not only using personality traits to group similar users, but they also considered
different contextual information such as location, changes in the state of the user, time, transition state, current
activity, and mood to predict reactions to interrupts and also interruptibility intensity. Kaur et al. [24] developed
a real-time system recommending during opportune moments transitions and breaks while not disrupting people
during their focused states. They evaluated their system with a combination of emotions (classified user’s facial
expression), productivity (daily task list), and self-reports. Using personalized models, they achieved an accuracy
of 86% and 77% for predicting opportune moments for transitions and breaks, respectively.
Khan et al. [25] propose a new approach for Automated Mood Recognition (AMR) in a smart office environ-

ment, which reduces computational requirements by requiring fewer mood models. This is done by clustering
physiological signals by groups of people who sense emotions in the same way. They used machine learning
models for classification and regression, which are trained based on the extracted features of users in common
perception clusters recognizing the mood. Eight different categories of moods are recognized, each with three
different levels denoting low, medium, and high intensities. The proposed approach seems to be a trade-off
between the requirement of a large number of personalized mood models and the insufficient performance of
generalized models for AMR. Results show respective average F1 scores of 0.76 and 0.79 for perception clusters
and personalized-based AMR.

2.4 Relevance to our approach
Current approaches in the field of attention management already concentrate on notifications and their con-
sequences on human behavior and well-being. It is already known that receiving notifications can negatively
impact on our mood and trigger stress. Likewise, the reverse case had shown that our mood influences our
behavior towards notifications and our interruptibility. We want to go one step further and look at the effects
of our mood on the response time to notifications. For this purpose, we extend the current state of research by
adding physiological signals to the moods captured via ESM. We want to identify whether the mood directly
affects the response time. Using individual regression models, we predict the receptivity of each user.

3 DATA COLLECTION
In this section, we describe the design and data collection of our in-the-wild study. First, we give a general overview.
Further, we provide some insights about the participants we measured, before we explain the applications and
collected data in detail.

3.1 Overview
We performed an in-the-wild study to gather user behavior regarding smartphone notification arrival, response
time, combined with contextual information and mood via Android smartphones, desktop computers, and
physiological signals. By advertising our study on our websites and networks, we acquired 27 participants for our
field study. The data collection began at the end of January 2020 and continued for five weeks. The participants
were asked, to install the applications Balance for Android (see Figure 2a) and Balance for desktop (see Figure ??)
on their smartphones and desktop computers, respectively. Both applications facilitate continuous background
sensing, as well as Experience Sampling Methods (ESMs) [22]. The participants were free to additionally choose to
have their physiological signals measured via an E4 wristband. This part of the measurement was coordinated and
supervised by a contact person from the respective country of origin. By installing the applications or putting the
E4 wristband on, the participants received information about the study and the data collected. After that, privacy
protectionmeasures and the rights of the participants were introduced (e.g., erasing their collected data on request).
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Response time

Location

Activity Standing Sitting, typing Drinking

On the move At work At work

Application Stream

Sitting

At home

90 minutesESM 10 minutes

Whatsapp Word Excel Paypal Google Whatsapp

Notification Interaction
10 minutes

Fig. 1. Study design to capture interruptibility, mood and response time.

Before the participants were guided by a short tutorial on using the corresponding applications and handling E4,
they had to give their informed consent. Our privacy department and ethics committee approved the consent
forms and data collection procedures. Our study design (see Figure 1) called for most contextual information to be
recorded in the background without the participant’s input, such as running applications, physical activities, or
locations. Another part of our mixed-method approach was to present scheduled questionnaires every 90minutes.
We asked the participants about their mood, social role, interruptibility, and the kind of task they were working
on in the last 15 minutes. Additionally, we implemented an event-based approach to show the questionnaire,
which was activated after the participant interacted more than 10 minutes with their phones. These scheduled
questionnaires were limited to the time between 7am and 10pm and the event-based ones had a minimum time
of 30 minutes between each other. Preventative we implemented the same limitation not to push a questionnaire
after the participant received a periodic one. With these restrictions, we addressed the strain of responding to
questionnaires and ensuring the quality of data [55, 56]. All used approaches are well-known in ESM based
studies to capture contextual information in-situ [55]. Figure 1 depicts the design of the study, explained above.

3.2 Participants
In our experiments, we focus on response time regarding smartphone notifications. Because of that, we took 18
of all measured 27 participants into account (15 male, 2 female, 1 diverse). The remaining 9 had to be removed
because they had not used a smartphone, we had not sufficient answers from them on the ESM questionnaires, or
some technical problems affected the data collected by them. Our participants were between 25 and 41 years old
(mean = 31.89 and std=3.85 years) and could be acquired from five different countries on three continents, e.g.
Asia, Oceania, and Europe. All participants came from a university domain comprising junior and senior scientists
and technical staff members. We found 18 Android, 11 Windows, and 7 macOS users in our measurement. 15
participants installed both, the smartphone and the desktop application, and 12 of them wore an E4 wristband
additionally (see Table ??). The data was regularly transmitted to a server hosted at our university and stored in
an internal database. The upload, as well as the data, were encrypted. Compared to other ESM-based studies
within the field of interruptibility, the overall answering rate (28.37%) is comparable to similar studies [44]. So to
say, 3504 out of 12352 questionnaires were answered.

3.3 Collected data
In this section, we introduce the two applications Balance for Android and Balance for desktop (see Figure 2),
which we implemented to capture user behavior on desktop computers and Android smartphones. The technical
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Table 1. Number of users per device and gender.

gender
device female male not specified
Smartphone only 0 2 1
Smartphone and desktop 0 3 0
Smartphone, desktop, and E4 wristband 2 10 0

details and used concepts for gathering background data and experience sampling will be given. First, we focus
on the implementation of the multi-platform application for Windows and macOS. Afterward, we will explain the
Balance for Android.

(a) Balance for Android: Showing the dashboard that displays
recent events that have been recorded.

(b) Screenshot of the ESM gathering mood information using
SAM from Bradley and Lang.

Fig. 2. Screenshots of the smartphone application Balance for Android (Figure 2a). It provided background sensing, experience
sampling, and was built to capture user behavior in a multi-device setting. The application supported English and German.
The mood ESM (Figure 2b) used the Self-Assessment Manikin (SAM) from Bradley and Lang [5] to gather the arousal and
valence state.

3.3.1 Balance for Windows & macOS. We decided to use a multi-platform application to cover the broadest
possible range of users, either using Windows or macOS as an operating system. The access to foreground
applications, the information given in their title bars, as well as keyboard and mouse events were provided by
the libraries pywin321 and the pyobjc2 on Windows and macOS, respectively. Both libraries are wrappers to
low-level native operating system interfaces that allow direct access to system information, peripheral devices,
and functions. Another two libraries our applications relied on are the psutil3 and subprocess324 libraries. We
1See: https://pypi.org/project/pywin32/
2See: https://pypi.org/project/pyobjc/
3See: https://pypi.org/project/psutil/
4See: https://pypi.org/project/subprocess32/
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used the cross-platform library Psutil to abstract information about system load and access to running processes.
This includes, among other things, retrieving battery information such as the remaining charge and power states.
With the subprocess32 library and native system calls, we parsed and scanned nearby Wi-Fi networks.

3.3.2 Balance for Android. The functionalities of the Balance for Android are very similar to the Balance for
desktop computers. Analog to the desktop application, the Balance for Android also regularly uploads the recorded
data encrypted to the university server. The main focus of the design was the low battery consumption, the
limited resources, and the seamlessly recording of the data in the background. With the background services, we
kept track of interactions with applications and notifications, location updates, and the phone’s state (e.g., screen
status, ringer-modes). The phone’s last known location was processed by a Fused Location Provider 5, an API to
estimate location information. It manages the Wi-Fi, mobile communication services, and GPS while improving
battery performance and resource consumption. Besides, we gathered information on physical activities by using
the Google Recognition API6. This API offers to report recognized physical activities and besides optimizing the
battery performance. The optimized battery performance is achieved by reducing updates when the device is idle
and using low-power sensors until the activity is reported.
Applications & Notifications. Accessibility Services7 or Notification Listeners8 are common methods to

gather data on applications and notifications using Android, in the field of interruption management [57, 59]. We
used the Accessibility Service to gather the name and the package identifier of the used application, running
in the foreground, from the smartphone. This record always happens when the window or its state changes.
Another Service integrated was the Notification Listener. It intercepts the reception and removal of notifications
and accesses their underlying representation. This helps us to get information like the time of arrival of the
notification, the contact and group names the notification came from, or the length of the notification’s content.
To extract the contacts and group names, we set some applications on a white-list to process their notifications
on the smartphone directly. As we were only interested in contacts, we set only popular messaging applications,
like Whatsapp, Outlook, Twitter, Facebook, Microsoft Teams, Slack, or Telegram, on the list.
In order to infer the responsibility of the user and to distinguish between the notifications we asked the user

about the relationship to the sender. The user could choose between the relationships family, friend, work, and
none, whereby multiple naming was possible. As the senders were transmitted pseudonymized for data protection
reasons, it could not be detected if a sender was named differently in different messengers or was part of a group
chat. Therefore, we could not avoid sending multiple relationship questionnaires over one sender with different
names. So that this additional questionnaire does not negatively influence the response rate, a minimum of
correspondences with this sender was assumed before this questionnaire was triggered.

3.3.3 Physiological data. During the data collection, participants were asked to wear Empatica E4 9 wristband as
shown in Figure 3. E4 wristband is first proposed in [19] and has multiple sensors: Electrodermal Activity (EDA)
sensor, 3-axis Accelerometer (ACC), Photoplethysmography (PPG) sensor, and optical thermometer. EDA has also
been known as galvanic skin response (GSR) or skin conductance, which measures the continuous variation in
skin electrical characteristics at 4 Hz. ACC records the acceleration in three axes at 32 Hz in the range of [-2g,
2g], which captures the physical activity of users. PPG is an optically obtained plethysmogram that can be used
to measure the Blood Volume Pulse BVP at 64 Hz. The Heart Rate (HR) and inter-beat interval (IBI) are derived
from BVP signals by the wristband. The optical thermometer measures the peripheral skin temperature (ST) at 4
Hz. Overall, the E4 wristband is light-weight and comfortable, which is particularly suitable for continuous and
5See: https://developers.google.com/location-context/fused-location-provider/
6See: https://developers.google.com/location-context/activity-recognition/
7See: https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
8See: https://developer.android.com/reference/android/service/notification/NotificationListenerService
9Empatica E4 wristband: https://www.empatica.com/en-int/research/e4/
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EDA

PPG

ACC

ST

Fig. 3. Empatica E4 wristband

unobtrusive monitoring of participants in our research. It was shown very early on that emotions are related
to the autonomic nervous system and that this is accompanied by changes in physiological signals [27, 29]. By
measuring a person’s physiological signals, changes can be recognized, and emotions can be assigned. We use the
correlation between mood and physiological signals by extracting features from these signals and incorporating
them into our regression models.

3.3.4 ESM questionnaire. In this study, the participants were asked to rate their mood regarding the last hour
(see Figure 2b). We used the Self-Assessment Manikin (SAM) from Bradley and Lang [5] to gather the arousal and
valence state. The arousal scale ranges from relaxed to excited, while the valence ranges from positive to negative.
Furthermore, we gathered the dominant social role the person has been in for the last 15 minutes. In [2] the
authors describes a social role as a mental construct, which individuals maintain to organize their surroundings.
Thus, we investigate work and private as domains with their labelled social roles as a characterization of different
behaviour. Contrary to prior work [37, 42], we decided not to be more granular regarding the different roles,
although family, work, and social are reported as the most universal social behaviours. The focus of our study lay
on the work-life balance, and the distinction between social and family seemed redundant, especially since the
relationship to contacts covers it. Finally, we asked the participants for whom they are interruptible - contacts
from the work or private domain, nobody (none), or everybody (both domains).

4 METHODOLOGY

4.1 Pre-processing approaches
In the first part of the machine learning, cleaning up the data is necessary to get rid of noise and homogenize it.
This preparation helps to process the data in all further steps. One of those preparations was to harmonize the
applications’ names through all considered platforms (windows, macOS, and android), e.g. mapping microsoft-
powerpoint to PowerPoint, or by removing system-specific endings by regular expressions. Furthermore, we
opted for parsing the google play store websites according to the mobile applications used by our participants to
extract the suited applications category.
The Google Recognition API returns all recognized physical activities and their corresponding confidence

ratings. Reducing the data, we chose the activities with the highest confidence rating and forwarded the last
known activity for all following events. An upsampling was also be done for other data like the ringer mode,
features regarding the last known locations, and screen status. The software package used to extract more valuable
place information was Plus Codes from google Plus Codes10. The code gives us a description of a rectangular
10See: https://maps.google.com/pluscodes/
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Table 2. Extracted features divided by device. Information marked with (∗) have been manually reported.

Feature Description Contextual Information

Smartphone Data

topk_x_unique Top k applications in the last 𝑥 ∈ 5, 10, 15, 20, 25, 30 minutes. Foreground application
phone_apps_X Number of used smartphone applications in the last 𝑥 ∈ 5, 10, 15, 20, 25, 30min-

utes, extracted from the name and the package identifier of the current fore-
ground application

Foreground application

physical_activity_X Number of unique physical activities reported by the Google Recognition API Physical activity
place_top_x, place_other Top three (𝑥 ∈ 1, 2, 3) frequently visited places and all other places. Category of

the location according to Google’s Geocoding API.
Location (Android)

screen_on, screen_off, screen The current state of the screen. Screen state
notification_length Length of the text within the notification. Notification content
Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sun-
day

Day of the week. Notification arrival time

morning, afternoon, evening,
midnight

Time of the day: morning (from 6 a.m. to 12 p.m.), afternoon (from 12 p.m. to6
p.m.), evening(from 6 p.m. to 0 a.m.), and midnight (from 0 a.m. to 6 a.m.)

Notification arrival time

is_weekend Binary value describing, whether it is weekend or not. Notification arrival time
loc_8, loc_10 Longitude and latitude information of the device as Plus Code Location
relation_x The participant’s relationship to the extracted contact and/or group. Participants

could choose between family, friend, work, and none. Multiple selections are
possible (e.g., work and friend).

Relationship∗

contact Hashed contact and/or group name extracted from notification titles Contact∗
Experience Sampling Method Data

valence, arousal The affective state of the last 60 minutes Mood∗
private, work, both, none Interruptibility preferences of the last 15 minutes. Interruptibility∗
private, work, both Social role of the person in the last 15 minutes. Social role∗
Physiological Signals

`, 𝜎2, 𝜎 Mean, Variance, Standard Deviation EDA, SCR, SCL, BVP, HR, IBI,
ST

min, max Min and max value EDA, SCL, SCR, BVP, HR, ST
rms Root mean square HR
𝑓𝑠𝑙𝑜𝑝𝑒 The absolute value of the slope of the linear regression line EDA, SCL, HR, ST
𝑓√

𝑠𝑙𝑜𝑝𝑒
The square root of the absolute values of the slope of the linear regression line EDA, SCL, HR, ST

𝑓1𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 The square root of the absolute value of the intercept of the linear regression
line

EDA, SCL, HR, ST

𝑓2𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 The third power of the square root of the absolute value of the intercept of the
linear regression line

EDA, SCL, HR, ST

nni_50/20, pnni_50/20, nni_20,
pnni_20

Number,and percentage of interval differences of successive RR-intervals greater
than 50ms and 20 ms, respectively

IBI

vlsf, lf, hf, lf_hf_ratio Power in HRV in the very low/low/high frequency. Power of lf/hf IBI
sdsd, range_nni The standard deviation of differences between adjacent RR-intervals. Difference

between the maximum and minimum nn_interval
IBI

cvsd, cvnni Coefficient of variation, of successive differences (cvsd), equal to the ratio of
rmssd / sdnn divided by mean_nni.

IBI

triangular_index TheHRV triangular indexmeasurement is the integral of the density distribution
divided by the maximum of the density distribution.

IBI

area, including the given longitude and latitude information. Depending on how long the plus code used is, the
accuracy of the location information differs.

4.2 Extracted features
We prepared the data according to our needs for the regression model. It was decided that the best method for
this investigation was to calculate the features on the data before the notification arrived. All extracted features
are shown in Table 2.
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4.2.1 Features extracted from Smartphone Data. We first examined the current context of the user. On the one
hand, it can be deduced from this whether the user is currently interruptible and, accordingly, whether the
user will react immediately to an incoming notification or not. For this purpose, we analyzed the apps used
in the last 5 to 30 minutes until the notification arrived. We discovered the top k smartphone applications by
counting the appearance of the application per user. Assume user 𝑋1 has an app set A = {𝐴1, 𝐴2, . . . , 𝐴𝑁 }, where
the app is sorted according to the number of receiving notifications from the training dataset. Namely, 𝐴1 app
receives most notifications and 𝐴𝑛 receives least notifications. In this research, we only study the top-k apps
A = {𝐴1, 𝐴2, . . . , 𝐴𝑘 }, where the 𝑘 is set to be 10. We will explain the 𝑘 in detail in Section 5.1.

One indicator of whether the person would respond immediately to a notification is whether the smartphone is
currently in use. For this, we asked whether the screen was on or not. We also took into account the length of the
notification and fromwhom the message came from. If the contact was known, we included the relationship to this
contact as well. The sender-recipient relationship is closely related to the response rate of the notification [31, 32].
Mehrotra et al. have reported that the sensed interruption depends on the sender of a notification and that chat
notifications from a family member or relative have shown the highest acceptance rates. As described earlier, we
used the Android Google API to record the current physical activities of the participants. Breakpoints in physical
activities have been proven to mark opportune moments for interruptions. Okoshi et al. [38–40] examined
breakpoints within physical activities and application usage. The authors find that notifications delivered at
breakpoints denoted as transitions between applications and physical activities can lower the individuals’ mental
burden. Ho and Intille [23] also suggest that notifications delivered during activity transitions produce more
favorable outcomes than those delivered randomly. The number of different activities detected was also used as
a feature in the first stage classification. As another feature, we used the Plus Codes representing the location
where the user is currently staying. The most frequently visited locations of each subject were also set as features.
For this purpose, we first determined the three locations of each subject visited most frequently by him during the
measurement process. These three locations represent our top 3 locations. All other Plus Codes were assigned to
the category other. After that, it was determined where the participant has been before receiving the notification
by setting one of the top 3 locations, or the category other true.
Furthermore, we used the day of the week, whether it was a weekend, and the time of day as features

representing time. To set a time of the day, we split the day into four parts, midnight (from 0 a.m. to 6 a.m.),
morning (from 6 a.m. to 12 p.m.), afternoon (from 12 p.m. to 6 p.m.), and evening (from 6 p.m. to 0 a.m.). Several
previous studies have investigated the relationship between times of the day and notification response [40, 41, 49].
Okoshi et al. and Saikia et al. have found that by sending out notifications at opportune times of the day, the
response time is greatly decreased.

4.2.2 Features from ESM Data. Additionally to the other features, we used the ESM questionnaire data, describing
the mood, the interruptibility preferences and the current social role. The mood was measured in two scales:
valence and arousal (see Section 3.3.4). They represent different kinds of feelings: from unhappy to happy
(represented as 1-5) and from calm to excited (represented as 1-5), respectively. In Section 5 we used the features
containing the contextual information of interruptibility and social role. We applied one-hot-encoding to represent
this nominal data.

4.2.3 Features for Physiological Signals. We decided to extract statistical features on all given physiological
signals, which are common to be used for mood recognition. Furthermore, we followed Heinisch et al. [21],
adding features based on the linear regression line. These features have been shown to be robust to the influence
factor of physical activity. Since we also conducted an in-the-wild study, we fell back on this type of feature.
The EDA signal can be divided into two components, the skin conductance response (SCR) and the skin

conductance level (SCL). SCR contains the high-frequency components of the signal, reflecting the rapid changes
in the signal in response to a stimulus. In contrast stand SCL, which contains the low-frequency components of
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Fig. 4. The number of notifications across all the apps for participant P10

the EDA and thus represents the long-term or baseline conductance. Splitting the EDA signal into these two
components, the python tool of Greco et al. [20] was used.

5 UNDERSTANDING THE MOOD, USAGE BEHAVIOURS AND NOTIFICATION RESPONSE TIME
OF PARTICIPANTS

In total, we have received 3236 ESM responses from 18 participants during the data collection. First, we explore
the notification response patterns of different participants. Second, we investigate the relationship between
users’ mood and their notification response time. Finally, we explore how mobile usage behaviours are related to
notification response time.

5.1 Understanding Notification Response Times for Different Participants
We explore the notification response time from top-𝑘 apps where 𝑘 = 10 because on average, the top ten apps sent
94.30% of the notifications (out of 2,362 notifications), while the other apps only sent 5.70% of the notifications
(see Table 3). If we only study the top five apps, we would miss 16.67% of the notifications, which is almost three
times the number of missed notifications from studying the top ten apps. For instance, Figure 4 displays the
number of notifications across all the apps for one participant P10 during the data collection. We find that P10

Table 3. Notification and app information for 18 participants

Min Max Median Mean

Number of apps 18 47 26 30
Number of notifications 363 6213 1914 2362
Percentage of notifications
sent by top 10 apps 84.67% 99.57% 94.88% 94.30%

Percentage of notifications
sent by top 5 apps 65.56% 97.90% 84.17% 83.33%
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Fig. 5. Cumulative distribution of notification response time from top ten apps for all participants

received 96.04% notifications from top ten apps and 86.16% from top five apps. Therefore, in this research, we did
not consider the apps receiving only a few notifications (𝑘 > 10) because the relatively small dataset would not
offer a robust representation of the notification response times for modelling. In real-world scenarios, 𝑘 can be
set to any values based on the categories of apps being explored.
To understand the notification response time for all participants, we show the cumulative distribution of

notification response times from top ten apps for each participant in Figure 5. It is obvious that response time
to most notifications is short, but the response time of some notifications are long. Specifically, out of 40,290
notifications received by 18 participants, the response time was within five minutes for 54.32% of the notifications,
within one hour for 75.86% of the notifications, within one day for 93.90% of the notifications. However, if we look
at the response times for different participants, we find that each participant has their own patterns and trends
for responding to notifications. For instance, participant P5 responded to 49.37% of their notifications within
five minutes and 86.96% within one hour, while participant P11 responded to notifications much more slowly,
only responding to 18.46% within five minutes and 32.36% within one hour. Hence, studying the participant-wise
notification response time is necessary, as the general model may be inaccurate due to individual differences.

5.2 App Categories and Response Time
Figure 6a displays the number of notifications across the app categories, showing that the communication apps
receive much more notifications than all the other app categories. In total, communication apps receives six times
more notifications than the app category that was ranked second (i.e. Productivity apps). Figure 6b shows the
average response times for each app category (black vertical line indicates the error bar, with a 95% confidence
interval). Since 93.90% of the notifications from all participants are responded in one day, we focus on analysing
those notifications and have removed the notifications with a response time of more than one day. Messages
that have not been responded more than 24 hours may be due to various reasons, such as the user forgot, or has
already responded on other platforms. We believe that it is more meaningful to focus on the notifications that
users reply in a timely manner, and the small number of notifications unanwsered for a long time will be explored
in our future research. We find that the response times varied significantly between the app categories. If we aim
to predict response time across all categories, the prediction performance would be unreliable due to the extreme
variations in the number of notifications and the average notification response time between app categories.
Therefore, in this research, we focus on predicting users’ response behaviours for communication apps.
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Fig. 6. Information for different app categories
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Fig. 7. Distribution of arousal and valence for 18 participants

5.3 The Mood of Users and Notification Response time
We calculate the overall distribution of mood in Figure 7, where 1 to 5 indicates a low to high value of va-
lence/arousal. Generally, participants usually reported positive valence (mean = 3.44) and low arousal (mean =
2.77), meaning that they were relaxed, clam, and comfortable [48] most of the time. We also explore how the
mood is related to factors such as daytime and interruptibility. As shown in Figure 8a and Figure 8b, participants
usually experienced the highest valence (mean = 3.56) and lowest arousal (mean = 2.58) in the evening (6pm -
12am). In contrast, they usually experienced the lowest valence (mean = 3.28) and highest arousal (mean = 2.97)
in the midnight (12am-6am). We also found that when the participants did not want to be interrupted by either
work or private affairs (i.e. interruptibility was ’none’), they were usually experiencing lowest valence (mean =
3.21) and highest arousal(mean = 3.03). Interestingly, when the participants experienced positive mood (high
valence), they were more likely to be amenable to interruptions relating to private, or private and work (i.e. both)
affairs. In general, the participants experienced varying mood with different levels of interruptiblity at different
times.
We also investigate how the mood changed based on social roles and the day of the week (see Figure 9a and

Figure 9b). We found that participants usually experienced high valence (mean = 3.55) and low arousal (mean
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= 2.67) when they were busy with private issues and tended to experience low valence (mean = 3.31) and high
arousal (mean = 2.88) when they were at work. Our participants had the highest valence in the private role on
Friday (mean=3.66) and Sunday (mean=3.66) and the lowest valence values (mean=3.25) at work on Saturday.
Saturday and Sunday were also different in the arousal scale, as the social roles ’both’ (mean=3.08) and ’work’
(mean=3.22) had the highest values, respectively. Interestingly enough, being in the role of private or both made
our participants feel the lowest arousal (mean=2.5) on Sunday.

Mehrotra et al. [34] investigated the causal links between users’ emotions and their interactions with mobile
phones. They found users’ emotions had a causal impact on mobile phone interactions. In this research, we
investigated the relationship between the participants arousal/valence and their notification response times to
understand whether human affect (in our case mood) can be used as a proxy for user response behaviours. We
computed the Spearman Rank Correlation [11] because the results from the Shapiro-Wilk Test [46] and D’Agostino’s
Test [10] revealed that none of the samples were normally distributed (p ≤ 0.05). We found that both the valence
and arousal were significantly correlated with the notification response time: Valence was negatively correlated
(r = -0.04, p ≤ 0.001) and arousal was positively correlated (r = 0.02, p = 0.012). These results indicate that people
usually took longer time to respond to notifications when they are distressed, frustrated or angry (low valence
and high arousal). Therefore, we will take into account the influence of valence and arousal in modelling the
notification response times in Section 6.

5.4 Impact of Applications on Notification Response Times
We already know that each participant has their own patterns for responding to notifications. However, we also
investigate whether each participant respond to different apps in different ways. Here we explore the influence
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of apps on notification response times. Figure 10 shows the cumulative distribution of the notification response
times for five popular apps for participant P10. It clearly shows that even for the same participant, the notification
response times vary from app to app. For example, this participant usually responded quickly to whatsapp, gmail
and telegram but much more slowly to threema. Specifically, within five minutes, this participant responded to
83.53% of notifications from whatsapp but 53.33% from threema. Therefore, it is necessary to consider the impact
of the apps to meaningfully model the notification response times.

6 EXPERIMENT
As introduced in Section 3.2, we will only focus on predicting the response times of 18 participants who installed
the smartphone app. In this research, we built the regression model for predicting the users’ response time to
notifications. Firstly, we introduce the experiment settings and prediction pipeline. Then we show the overall
prediction results and study the impact of mood-related features. Lastly, we investigate how individual differences
or categories of applications influence the response time.

6.1 Prediction Pipeline
We adopted the regression model for predicting notification response times. The prediction pipeline is described
below.
Regressors. In the prediction model, we adopted several commonly used regressors such as Standard Linear

Regressor [51], Support Vector Regressor (SVR) [7], Gradient Booting Regressor (GBR), Randome Forest Regressor [30]
and Bayesian Ridge Regressor [53]. Linear regressor is one of the most widely used regression models. The Support
Vector Machine (SVM) in regression problems is usually known as SVR, which is one of the most commonly used
regression models. The GBR model is a powerful prediction model, and it is an ensemble method combining a
set of weak predictors to achieve reliable and accurate predictions. Random Forest Regressor follows the idea of
the random forest, and it can estimate the importance of various features in a model. Bayesian Ridge Regressor
conducts linear regression using probability distributors rather than point estimates, which provides a natural
mechanism to create predictive models when data is insufficient or poorly distributed.
Validation. Cross-validation is a common practice for training and testing prediction models and is used

to estimate the unbiased generalisation performance of models. However, cross-validation may lead to the
optimistically biased evaluation of prediction performance when the same cross-validation process is chosen
to both tune and select the model. Similar to previous ubiquitous computational studies [12, 17], we adopted
nested cross-validation [36], which performs two iterations over the data. The outer loop is used to evaluate
the performance of the regressors, and the inner loop is used for optimisation of hyper-parameters and feature
selection. After performing this cross-validation, we then applied k-fold cross-validation (k = 5) on both loops for
each participant. In the outer loop, once the training set and testing set were defined, we standardised features by
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Fig. 11. Prediction results across different regressors for each participant

removing the mean and scaling the data to unit variance. In the inner loop, we optimised the hyper-parameters
using a grid search. We then selected features according to the K highest scores based on f-regression [43] (f-value
between the label/feature for regression tasks). The top eight features were selected as the input features for each
regression model because we found that the this resulted in the lowest prediction error.
Baselines. In human-centred research, it is usually difficult to compare the prediction results with state-of-art

baselines. The main reason is that the types of data collected, the demographics of participants and the natural
environment vary widely across studies, it is not fair or applicable to compare the prediction performance between
different studies. Additionally, to our knowledge, we have not found any research that attempts to predict the
notification response time for mobile users. As a result, similar to previous human-centred studies [17, 58], we
have adopted simple baselines to compare the modelling performance. In particular, we compare the proposed
models with two baselines: Mean baseline and Median baseline. As one of the most widely used simple baselines
to compare with other regressors, Mean baseline always predicts the mean of the training set. Median baseline
always predicts the median of the training set. The reason why we choose Median baseline is that the distribution
of notification response time is highly skewed (see Figure 5), whereas the Median baseline is most informative
for skewed distributions or distributions with outliers.
Evaluation Metrics. To evaluate the performance of notification response time, the Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) metrics are applied for evaluating the prediction performance. The
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Table 4. Prediction results with different regressors using mobile data

Bayesian. Linear. SVR. GBR. R. Forest. Mean Baseline Median Baseline

MAE 0.7764 0.7797 0.7770 0.7797 0.8014 0.8541 0.8544
RMSE 1.0527 1.0533 1.0601 1.066 1.0798 1.1454 1.1441

MAE = 1
𝑛

∑𝑛
𝑖=1 |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑 | and RMSE = 1

𝑛

∑𝑛
𝑖=1 (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑 )2, where 𝑛 indicates the number of samples, 𝑦𝑡𝑟𝑢𝑒

means the actual notification response time and 𝑦𝑝𝑟𝑒𝑑 means the predicted response time. The MAE and RMSE
describe the goodness of predictions compared with the ground truth of notification response time. The closer
the MAE and RMSE are to 0, the better the performance of the prediction model.

6.2 Prediction Result with Mobile Data
As discussed in Section 5.1, the notification response behaviours were very different between the participants (see
Figure 5). Therefore, in the experiment, we built participant-wise regression models instead of a general model
for all participants. Figure 11a and Figure 11b show the MAE and RMSE results across different regressors for
each participant. We found that the regression models achieved much better predictive performance than both
baselines for most participants (i.e., P2, P3, P9, P12, P17 and P18). For example, for participant P9, the Bayesian
regression model had the best predictive performance (MAE = 0.6505 and RMSE = 0.8779), with 0.1828 (21.94%)
of MAE and 0.2101 (19.31%) of RMSE lower than the Median baseline model.

However, for some particular participants (e.g., P1 and P13), only a small number of regressors achieved lower
MAE and RMSE than the baseline models. The possible reasons why some regressors did not work well on a small
number of participants are twofold: (1) The notification response behaviours of these participants were more
random and changeable than others, which makes them difficult to predict. These individual differences in mobile
usage behaviours have been discussed in prior research [6]. (2) These participants had very different notification
response behaviours when using different apps, which is difficult to represent in one regression model. However,
it was not practical to build a predictive model for each app due to the limited number of notifications.
Next, we calculated the overall prediction performance for all participants by averaging the MAE and RMSE

values from the participant-wise models. Table 4 shows the overall prediction result for all participants. It shows
that all regression models had better prediction performance than the two baseline models in terms of MAE and
RMSE, demonstrating the models’ potential for predicting notification response time for the ordinary people. The
Bayesian model achieved the best prediction performance of all the regression models and obtained the 0.7764 of
MAE and 1.0527 of RMSE, which was 0.078 (9.10%) and 0.093 (8.09%) lower than the mean baseline, respectively.
Although the overall prediction performance does not sounds particularly good, the prediction performance was
very high for most individuals (see Figure 11).

Figure 12 shows the feature importance for each participant, which was calculated using f-regression score in
the scikit-learn python package. Higher values indicate more important features. Understanding the importance
of a feature is significant in helping us better understand a problem and can lead to better prediction performance
through feature selection. In Figure 12, we can see obvious individual differences in feature importance for
predicting notification response times. For example, the response time for some participants (e.g., P3, P5 and P15)
was significantly affected by location, while some participants’ (e.g., P12 and P13) were not affected by location.
Many participants’ response time were influenced by the daytime, workday or not, screen status, relationship
with senders or the number of apps used in the past 5, 10, 15, 20, 25, 30 minutes. The above phenomena are in line
with our daily experience and may be due to the various personalities or usage habits of mobile users [18, 60].
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Fig. 12. Feature importance for each participant in the prediction

6.3 Impact of Mood-related Features
We also explored the impact of mood-related features on predicting notification response times. The mood-related
features were divided into two groups: ESM features and E4 features. For ESM features, we mainly focused on the
perceived arousal and valence, based on ESM questionnaires. For E4 features, we mainly focused on the features
extracted from physiological signals (i.e., EDA, HRV and ACC) from the E4 wristbands.
ESM features. We built regression models with two different sets of features: (1) mobile features and ESM

features; (2) mobile features only. Since we only had limited number of ESM responses, we removed the data
instances without corresponding arousal and valence values. To achieve a fair comparison, we used the exact
same rows of data (8408 data instances) in each of the above two different models. The results of the experiment
showed that all the regression models using the second set of features had higher MAE and RMSE values than
those using the first set of features, where the MAE/RMSE of baseline models are exactly the same. The findings
indicated that the ESM features improved the prediction performance of the model for notification response
times.

E4 features. To study the impact of the E4 features, we built regression models with two different sets of features:
(1) mobile features and E4 features; (2) mobile features only. After removing the NaN values in the whole dataset,
1491 rows of data instances remained, which were used to build the regression models using the two sets of
features, as mentioned above. The results of the experiment showed that most of the regression models (except
Bayesian regressor) achieved better prediction performance with the first set of features, i.e. mobile features and
E4 features. A possible reason may be the small number of E4 data instances, e.g. participant P11 only had 19
rows of data instances and P9 only had 27 rows of data instances, which makes it difficult to make meaningful
predictions.

7 IMPLICATIONS AND LIMITATIONS

7.1 Implications
This research addressed the relationship between mood and interruptiblity and investigated the possibility
of automatically predicting notification response times and actions based on users’ moods. Our research also
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provides opportunities for the future design of intelligent notification management systems for the mobile or
desktop devices, which could benefit the wellbeing and productivity of users. In our paper, we analysed the
impact of mood, as measured by ESM questionnaires, and physiological data, as measured by E4 wristbands, on
notification response times. We found that affective data can help to improve regression models to assist in the
handling of smartphone notifications.

7.2 Limitations
ESM data: One limitation of our study is that some data, such as mood, was gathered using an ESM questionnaire
pushed either every 90 minutes or after the user had been using their smartphone usage for 10 min. This kind of
questionnaire must be seen as an interruption itself. In addition, the questionnaire popped up on, the smartphone
as a notification, which may have caused the participants to interact with their smartphones more often than
they would normally have. However, this method of data collection is very common in the field of interruption
management, and as the data were used to develop the individual regression models, we believe that these initial
results are valuable for further research. We are aware that a follow-up in-the-wild study is needed to validate
the models developed.
Mood: Another limitation is the use of the ESM questionnaire to capture the participant’s mood. It is important

to note that many people struggle to identify or name their moods correctly [27], and the reliability of self-report
data can be influenced by various response biases [16]. To compensate for this weakness, we added physiological
signals to the SAM data, which also conveys information about human affective states. Even though these are not
free of external influences (e.g. external temperature and physical movement), they form a basis for the research
in combination with the ESM data.
Data Distribution: There was minimal diversity in terms of age and gender, and there were only a small

number of participants. In particular, the number of participants wearing the E4 wristband needs to be increased
in future research to reduce the bias. Additionally, no application for iPhones or other Smartphone OS-Systems
than Android was implemented. Likewise, the data were very unbalanced because of the number of different
apps used by each participant and the number of notifications (see Figure ). There was significant variation
in how the subjects behaved and the apps that they used. Some users interacted frequently with many apps,
while some users frequently interacted with a few apps and rarely with many other apps. These factors mainly
influenced the results of the regression analysis, making it almost impossible to create a generalised model. After
pre-processing, we also recognised that for some participants the quantity of data recorded was very low. This
problem can be addressed in future work by measuring more participants and data. First, the users could be
clustered according to their app usage behavior patterns. After that, response time prediction models created for
the different behavior patterns could follow. This process would also enable a cold start for new users.

8 CONCLUSION
Understanding the notification response behaviour of users is of vital importance for developing the next-
generation mobile management system to improve users’ productivity and well-being in daily lives. In this
research, we predict notification response time by understanding people’s mobile usage behaviours, mood,
and physiological patterns. We have conducted an in-the-wild study of more than 18 participants with mobile
devices and wearables in a five-week data collection. We develop multiple regression models to predict the
notification response time for each participant. The experimental results show that the proposed model achieves
higher prediction performance than all the baselines. We find that the use of mood data in the form of ESM and
physiological signals (e.g., EDA and HRV) improves the prediction significantly. In addition, we identify the
most significant features affecting the prediction of notification response time for each participant. Further, we
discuss various factors affecting the prediction performance such as the individual differences and categories of
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applications. Overall, our research showed that the notification response time can be predicted accurately using
smartphone data (such as location, application usage,etc.), and the prediction performance can be significantly
improved by utilizing mood-related features from ESM data or physiological signals. This result is a significant
step toward achieving an attention management system that combines human well-being and behavior.
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