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Abstract

With advances in sensors, wearables and the Internet of Things, it has become more and more

convenient to gather information from human daily life, which has promoted the development

of human behavioural sensing technology. In general, heterogeneous sensing data (e.g. be-

havioural, environmental and physiological sensing signals) may come from different sources

(e.g. mobile phones, buildings, weather stations and wearables). From this information, it

is possible to infer multiple human behaviours and psychological states, such as personality,

thermal comfort and learning engagement. Sensing and profiling human behaviours has many

advantages, such as supporting medical diagnosis, improving self-awareness, creating support-

ive study/work environments and taking timely measures to promote human wellbeing.

However, human behaviour sensing is a complex task with some key challenges: (1) Limited

sources of sensing data: Previous research has primarily explored one type or a limited number

of types of sensing data (e.g. accelerometer data and heart rate signals) to build predictive

models rather than incorporating sensing data from multiple sources. (2) Lab-based settings:

Most studies have been conducted in environments specifically designed for research; however,

field experiments are more likely to reflect real-world human behavioural patterns due to the

authenticity of natural settings. (3) Difficulty in validating the ground truth: Self-report sur-

veys are generally considered to be measures of ground truth in human-based research but

may be prone to subjectivity and various types of response bias. (4) Difficulty in depicting

dynamic behaviours: Human behaviours are dynamic and complex in heterogeneous environ-

ments, making it difficult to accurately depict them. (5) Shortage of annotations: Traditional

self-report surveys are the most popular way to understand human behaviours, but they are

both time consuming and labour-intensive, resulting in insufficient annotations and difficulty

1
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in creating effective models. In this thesis, we address the above challenges and make the

following contributions.

First, we address the challenge of the limited sources of sensing data in the wild. Using

wearable sensors to log physiological data and daily surveys to query the participants’ thermal

comfort, learning engagement, emotions and seating behaviours, we will collect data from 23

high school students and six teachers participating in 11 courses (144 classes) over a four-week

period. We will then explore the validity of the collected data to ensure that we can reliably

profile human behaviours using heterogeneous sensing data collected in the wild.

Second, we will explore wearable and environmental sensing data to understand learn-

ing engagement in the wild. With the data previously collected in the wild, we will create

a classroom sensing system to automatically measure the multidimensional engagement (i.e.

behavioural, emotional and cognitive engagement) of high school students during classes. In

particular, we will combine physiological signals, physical activities and indoor environmental

data to estimate changes in student engagement levels. To the best of our knowledge, this will

be the first system for detecting multidimensional engagement from multiple sensors in the

wild.

Third, we will investigate group behaviours to understand social relationships using phys-

iological sensors. We will explore how the group-wise seating experience relates to student

engagement by examining the participants’ physiological arousal and synchrony. We will in-

vestigate whether students sitting close together are more likely to have similar learning en-

gagements and greater physiological synchrony than students sitting far apart. This research

has the potential to assist in maximising student engagement by providing more flexible and

intelligent seating arrangements in the future.

Fourth, we will employ unobtrusive mobile sensing for dynamic user behavioural mod-

elling. Two real-world tasks (modelling Big Five personality traits and notification response

behaviours) will be explored based on the participants’ mobile phone usage behaviours. A

comprehensive study on a real-world dataset will demonstrate whether it is possible to utilise

smartphone usage behaviours to predict users’ Big Five personality traits. In order to estimate

response times, we will investigate whether the established regression model can accurately
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predict the response time to notifications using the user’s mood and physiological signals. Our

research will shed light on the future intelligent notification management system for mobile

users.

Finally, we will model aggregated behaviour (i.e. thermal comfort) using environmental

sensing with limited annotations by transferring knowledge from multiple locations to another

domain. We will build a transfer learning framework and confirm that thermal comfort sensor

data from multiple cities in the same climate zone can be used to improve the small thermal

comfort dataset of a target building that has insufficient training data. Extensive experimen-

tal results will show that the proposed models outperform the state-of-the-art algorithms for

thermal comfort prediction and can be implemented in any building, even if adequate thermal

comfort labelled data are not available.

In summary, this thesis provides several contributions to profiling and modelling human

behaviours in the wild. This research will exploit various types of sensing data from multi-

ple sources in different real-world tasks to address common challenges in the area of human

behavioural modelling. We will also publish the largest and most diverse dataset collected in

the wild to better understand participants’ behaviour, engagement, emotion and comfort using

heterogeneous sensors and wearables. This will benefit building scientists, behavioural psychol-

ogists and ubiquitous computing researchers in the future. Overall, we believe this research

will provide a significant contribution to human-based sensing and behavioural profiling in the

wild that will make researchers, managers and policymakers more aware of occupants/users

and more able to adapt to their needs.



Chapter 1

Introduction

A sensor is a device that detects changes in quantities, such as acceleration, pressure, light and

temperature. With the advancements in sensing technologies, sensors have become smaller,

lighter and more accurate, which allows them provide large amounts of data almost instanta-

neously from anywhere in the world. Sensors can be attached to fixed objects (e.g. weather

stations) or individuals under observation (e.g. in smartphones or wearable sensors) [3]. Time

series of digital tracking information are produced from various internet of things (IoT) devices,

making it increasingly convenient to gather information from people’s daily lives.

The advances in and increased maturity of both the hardware and software involved in

sensor technology have facilitated the development of the field of human behaviour sensing [4].

Human behaviour sensing refers to the collection and analysis of data from sensors embedded

in daily life with the purpose of inferring human behaviours, feelings, thoughts, traits, etc.

from the data collected [5]. Over the past decades, it has become a popular research topic,

playing an important role in the fields of education [6, 7], transportation [8], ambient assisted

living [9, 10], pervasive and mobile computing [11, 12], etc.

Sensing and monitoring human behaviours to support medical diagnosis, disease surveil-

lance, epidemic outbreak tracking and chronic disease management [13] have been shown

to benefit the traditional clinical techniques. In addition, human sensing can improve self-

awareness, assist in creating the right study/work environments and help managers or poli-

cymakers take timely measures to improve human wellbeing [14, 15]. Notably, with advance-

4
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Figure 1.1: An illustration of how human behaviours can be inferred from heterogeneous sensing
data

ments in wearable sensors, humans are being encouraged to adopt healthier lifestyles, such as

adequately brushing teeth [16], properly washing hands during the COVID-19 pandemic [17],

accurately tracking food intake [18, 19] and significantly improving medication compliance [20].

Figure 1.1 illustrates the general process for inferring human behaviours from sensing data.

First, the various types of sensing data (e.g. behavioural, environmental and physiological)

are collected from multiple sources (e.g. mobile phones, wearables and weather stations).

The signals from the sensors are then translated into specific human psychological states and

characteristics, such as engagement, emotion, thermal comfort and personality traits. This

translation process is achieved by building machine learning (ML) prediction models for human

behaviours using sensor data and ground truth data (e.g. self-report survey responses) as the

input and output. Once the model is built, human behaviours can be inferred and monitored

using only the sensor data.

Despite research efforts over the years, accurate human behaviour sensing in the wild still

faces enormous challenges. The effectiveness of human sensing is influenced by multiple factors,

such as shortage in annotations, limited sources of sensing data and difficulties validating the

ground truth and depicting dynamic behaviours. In addition, most existing research was con-

ducted in the lab, and real-world data are very scarce. To mitigate these issues, in this thesis,

we will process various types of pervasive data, including data from wearables, environmental

sensors and mobile signals, to analyse human behaviours and discover hidden patterns. Multi-
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ple human responses and behaviours (e.g., emotion, seating preferences, notification responses

and thermal comfort) will be explored in different real-world scenarios using self-collected data

and publicly available datasets. The contributions of this research will verify the importance

of sensing and profiling human behaviours in the wild.

1.1 Motivation

Currently, various aspects of people’s lives are being continuously measured by sensors em-

bedded in multiple locations (e.g. mobile phones, wearables, buildings and weather stations),

promoting the movement of the quantified self and improving people’s self-awareness and well-

being. The quantified-self seeks self-knowledge through self-tracking. This idea was formed

in the 1970s [21] and expanded rapidly from 2015 with advances in consumer-friendly mobile

and wearable sensing technologies. The quantified-self usually uses life-recording practices

and trends for data acquisition, with the aim of improving their physical/mental health and

wellbeing. Recently, accurate self-tracking and self-awareness have become possible with the

widespread adoption of mobile and wearable fitness/sleep trackers (e.g. Fitbit [22], Apple

Watch [23] and Oura Ring [24]) and the increasing popularity of IoT devices in smart homes

and buildings (e.g. Nest Thermostat [25] and Netatmo [26]).

The ability to sense and profile human behaviours is necessary for the design of intelligent

feedback systems for users or managers in various scenarios. For instance, with the help of

a classroom engagement sensing system, teachers can take timely measures to improve the

learning experience for students (e.g. plan learning schedules, re-engage students with low en-

gagement or ventilate the classroom to let fresh air in). Such a sensing system has the potential

to greatly contribute to improving student achievement and decreasing the school dropout rate.

Another example is the thermal comfort controlling system. By sensing the thermal comfort

of the occupants of a building accurately, this system can maintain a comfortable environment

to optimise the wellbeing of the occupants while minimising energy usage.
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1.2 Research Challenges

In this research, we aim to address key research challenges for human behaviour modelling

and profiling in the wild. The rapid growth in various sensor technologies and the possibility

of mass-producing sensors in an economical manner has made it possible to collect hetero-

geneous sensing data to enable us to understand complex human behaviours. However, the

sensor data collected from various types of sensors in natural settings are usually primitive and

heterogeneous in format and storage [3]. Such datasets usually lack descriptions and are ad

hoc, making it difficult to share and reuse data from them. When researchers analyse these

datasets, they face challenges during data acquisition and processing, such as data sparsity,

data heterogeneity, reliability of the self-report responses of users, imbalanced data distribution

and limited annotations. Even when a dataset is well structured with sufficient descriptions, it

is still difficult to build an effective predictive model due to the complexity and dynamic nature

of human behaviours. In summary, some common challenges for human behaviour sensing and

profiling are outlined below:

One of the challenges of human behaviour sensing and profiling is gathering heterogeneous

sensing data in an unobtrusive way and collecting the ground truth of human behaviours and

mental states. Collecting sensing data from different modalities at the same time requires

taking multiple factors into account (e.g. privacy, storage and battery) and is expensive, es-

pecially in the natural environment. Generating ground truth labels for human behaviours

and mental states is challenging due to the nature of these phenomena [27]. Unlike traditional

tasks, such as human activity recognition or face recognition, it is often difficult or impracti-

cal for researchers to identify the real ground truth of mental states in human-based studies

using traditional methods (e.g. annotations from videos/images, transaction records and GPS

trajectories). The most commonly used methods for measuring behavioural traits and mental

states is asking participants to respond to self-report surveys [6, 28] or conducting an Ecological

Momentary Assessment (EMA). These are generally regarded as the measures of ground truth

[29, 6, 30, 31, 32] in prediction models but may be prone to subjectivity and response bias.

Depicting dynamic and complex human behaviours and states in different scenarios using

sensing data is a challenging task. Human behaviours and states are affected by multiple
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factors, such as social relationships, time and physical spaces. Therefore, they are usually

capricious, dynamic and multi-granular [3]. To build an effective predictive model, extracting

features from cleaned sensing signals is one of the most important steps. In general, statisti-

cal features are not sufficient to describe complex behavioural patterns or emotional arousal

from sensing signals, and various high-level features based on curve fitting or domain trans-

formation [33] need to be carefully constructed to accurately depict human behaviour. The

establishment of effective features usually requires a large amount of cross-domain background

knowledge, especially for physiological signals, such as electrodermal activity (EDA) and pho-

toplethysmography (PPG) signals. In general, there is no proper feature extraction method

that has a good practical effect for profiling human behaviours in various contexts. Therefore,

an effective method for accurately and effectively extracting robust features from physiological,

environmental and behavioural sensing signals is a challenge that has not yet been overcome.

The shortage of annotations is a critical issue that needs to be solved in human sensing

studies. In recent years, many researchers have applied data-driven ML techniques to human

behaviour modelling (e.g. thermal comfort [14], personality [12] and learning engagement

[30]). However, it is usually difficult to obtain sufficient labelled data, especially in human-

based studies, due to the limited budget for recruiting participants. The shortage of labelled

data undoubtedly limits the performance of data-driven models. Transfer learning allows

researchers to create an accurate model from previous tasks [34]. This technique has been

applied to many real-world applications involving image/video classification, natural language

processing, recommendation systems, etc. Although a few researchers [35, 36, 35] have started

to use transfer learning to build human behaviour models, their target datasets are usually

collected from laboratory studies. In addition, most researchers have utilised additional sensing

devices (e.g., thermal cameras [37], eyeglasses [38] and wristbands [35]). Therefore, it is critical

to solve the issue of how to apply transfer learning to human-based studies with limited sensing

data.

In summary, the fundamental challenges surrounding human behaviour modelling in the

wild are identified as follows:

• Collecting heterogeneous sensing data from multiple modalities and validating the ground
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truth of human behaviours, traits and mental states.

• Depicting dynamic and complex human behaviours in different scenarios.

• Understanding human behaviours with limited self-report annotations.

• Modelling real-world human behaviours in natural settings instead of lab-based settings.

• Incorporating sensing data from heterogeneous environments and multiple sources to

create a robust prediction model.

1.3 Research Questions

To address the aforementioned research challenges, the following research questions (RQs) are

defined, with the goals of performing accurate human behaviour sensing and profiling in the

wild.

RQ-1. How to capture and validate multidimensional human behaviours and states using

heterogeneous sensors in the wild?

This research question addresses the challenges related to capturing multidimensional be-

haviours (e.g. seating patterns, engagement, emotion and thermal comfort) of people (e.g.

students and teachers) using wearable and environmental sensors in the wild. Specifically, this

research question explores the validation of collected data to ensure that human behaviours

can be reliably profiled using heterogeneous sensing data collected in the wild.

RQ-2. How to model and predict people’s emotional, cognitive and behavioural engagement

using wearable and environmental sensor data?

This research question aims to predict user engagement by using wearable and environmen-

tal sensing data to build an inference model. We will ask students questions like whether they

paid attention in class, pretended to participate in class but actually did not, enjoyed learning

new things in class, etc. Using the data collected from RQ-1, we will focus on predicting the

multiple dimensions of student engagement including emotional, behavioural and cognitive en-

gagement in class. Specifically, we will extract novel features to represent the multidimensional
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factors influencing student engagement in various classes across different subjects to predict

student learning engagement.

RQ-3. How to explore the effects of individual and group behaviours (e.g. seating patterns)

on people’s perceived and physiologically measured engagement in different courses?

This research question explores how group-wise seating experiences relate to student en-

gagement in various subjects by understanding their physiological arousal and synchrony.

Based on the data from RQ-1, we will extract features from the physiological signals that

depict student engagement in class. We will then investigate the correlation between group

seating behaviours and perceived and physiologically measured engagement.

RQ-4. How to utilise mobile sensing to profile personality traits and receptivity to inter-

ruptions among different user groups?

In RQ-1, RQ-2 and RQ-3, we mainly focus on using environmental and wearable sens-

ing data for human behaviour modelling, which requires the installation of specific sensors or

wearing of wristband devices. This research question considers situations in which unobtrusive

mobile sensing is used for behaviour modelling. The Big Five personality traits and notifica-

tion response behaviours of users will be explored and predicted based on their mobile usage

behaviours.

RQ-5. How to model aggregate behaviour (e.g. thermal comfort) from environmental

sensing data with limited annotations?

It is often difficult to obtain sufficient annotations from self-report surveys, which limits

the performance of data-driven prediction models of human behaviours. This research question

is designed to address this challenge in human-based studies. A transfer learning framework

is proposed for accurate thermal comfort modelling with limited labelled data by transferring

knowledge from multiple locations.

1.4 Research Contributions

Based on the aforementioned research questions, the contributions of this thesis are as follows:

1. Publishing the largest heterogeneous environmental and affect sensing dataset and dis-
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Figure 1.2: Overview of the thesis structure and organisation

cussing the reliability of ground truth for human behaviours.

2. Integrating human behaviour dynamics with domain knowledge in multiple real-world

scenarios.

3. Modelling occupant multidimensional engagement with physiological and environmental

sensing.

4. Predicting personality traits and response behaviours of people using mobile sensing.

5. Designing a transfer learning model for thermal comfort modelling across different cities.

1.5 Thesis Organisation

The remaining chapters of this thesis are organised as follows:
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• Chapter 2: Data Collection and Ground Truth Validation. To answer RQ-1, this

chapter describes the heterogeneous data collection using wearables and environmental

sensors on a high school campus and discusses the reliability of self-reported data collected

in the wild. The dataset that we collect in this chapter is further used in Chapter 3 and

Chapter 4.

Copyright/credit/reuse notice: The contents of this chapter are taken and revised as

needed from a paper published as

– Gao, N., Marschall, M., Burry, J., Watkins, S., & Salim, F. D. (2022). Under-

standing Occupants’ Behaviour, Engagement, Emotion, and Comfort Indoors with

Heterogeneous Sensors and Wearables. Scientific Data, 9(1), 1-16. DOI:10.1038/s41597-

022-01347-w [39] (Impact Factor: 8.501, SJR: Q1).

– Gao, N., Rahaman, M. S., Shao, W., & Salim, F. D. (2021). Investigating the

Reliability of Self-report Survey in the Wild: The Quest for Ground Truth. In Ad-

junct Proceedings of the 2021 ACM International Joint Conference on Pervasive

and Ubiquitous Computing and Proceedings of the 2021 ACM International Sym-

posium on Wearable Computers (pp. 237–242). DOI:10.1145/3460418.3479338 [40]

(Workshop at a Ubicomp 2021).

• Chapter 3: Modelling User Engagement Behaviours from Wearable and En-

vironmental Sensors. Based on RQ-2, a classroom engagement sensing system called

n-Gage is presented. This system can automatically measure the multidimensional en-

gagement (behavioural, emotional and cognitive engagement) of high school students

during class. It combines wearable data (physiological signals and physical activities)

and indoor environmental data to estimate changes in student engagement levels. Novel

features are presented to indicate the physiological and physical synchrony between stu-

dents, which is useful for predicting student engagement.

Copyright/credit/reuse notice: The contents of this chapter are taken and revised as

needed from a paper published as

https://doi.org/10.1038/s41597-022-01347-w
https://doi.org/10.1038/s41597-022-01347-w
https://doi.org/10.1145/3460418.3479338
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– Gao, N., Shao, W., Rahaman, M. S., & Salim, F. D. (2020). n-Gage: Predicting in-

class Emotional, Behavioural and Cognitive Engagement in the Wild. Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(3),

1–26. DOI:10.1145/3411813 [30] (Distinguished Paper Award).

• Chapter 4: Understanding Classroom Seating Behaviours from Perceived and

Physiological-based Student Engagement. This chapter describes the solution to

RQ-3. We demonstrate the phenomenon that the individual and group-wise classroom

seating experience is associated with perceived student engagement and physiological-

based engagement measured from electrodermal activity signals. We also find that stu-

dents sitting near each other are more likely to have similar physiological arousal and

synchrony than students sitting far from each other.

Copyright/credit/reuse notice: The contents of this chapter have been taken and revised

as needed from a paper published as:

– Gao, N., Rahaman, M. S., Shao, W., J, K., & Salim, F. D. (2021). Individual

and Group-wise Classroom Seating Experience: Effects on Student Engagement in

Different Courses (Under Review in IMWUT, Major Revision).

• Chapter 5: Profiling Individual Personality Traits and Response Behaviours

using Mobile Sensing Data. In this chapter, two prediction models are presented in

relation to the challenges stated in RQ-4. Two real-world case studies are presented to

illustrate and explore mobile sensing in different scenarios. The solutions associated with

profiling Big Five personality traits and notification response behaviours using mobile

sensing are introduced.

Copyright/credit/reuse notice: The contents of this chapter are taken and revised as

needed from a paper published as

– Gao, N., Shao, W., & Salim, F. D. (2019). Predicting Personality Traits From

Physical Activity Intensity. IEEE Computer, 52(7), 47–56. DOI:10.1109/MC.2019.2913751

[12] (Impact Factor: 4.419, SJR: Q1)

https://doi.org/10.1145/3411813
https://doi.org/10.1109/MC.2019.2913751
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– Heinisch, J. S., Gao, N., Anderson, C., DelDari, S., David, K., & Salim, F. D.

(2022). Investigating the Effects of Mood & Usage Behaviour on Notification Re-

sponse Time [41] (Co-first Authors, To be Submitted to IMWUT).

• Chapter 6: Modelling Thermal Comfort using Limited Labelled Data in

Smart Buildings. This chapter presents the solution to RQ-5.

The proposed transfer learning framework can deal with the data shortage problem in

thermal comfort modelling by transferring the knowledge from similar thermal environ-

ments to a target building. In addition, we improve the predictive performance and build

meaningful classifiers by using a GAN-based resampling method to imbalance the class

distribution of occupants’ thermal sensation.

Copyright/credit/reuse notice: The contents of this chapter are taken and revised as

needed from a paper published as

– Gao, N., Shao, W., Rahaman, M. S., Zhai, J., David, K., & Salim, F. D. (2021).

Transfer Learning for Thermal Comfort Prediction in Multiple Cities. Building

and Environment, 195, 107725. DOI:10.1016/j.buildenv.2021.107725 [14] (Impact

Factor: 4.820, SJR: Q1).

• Chapter 7: Conclusion. This chapter concludes the thesis by summarising the main

contributions and limitations of the proposed methods. In addition, it discusses the

implications and future directions of sensing human behaviours in real-world scenarios.

In summary, the core chapters (Chapter 2–6) contribute to several key research questions in

human behaviour sensing and modelling in the wild. The main contributions and connections

are detailed in Figure 1.2. Note that the core chapters (excluding Chapter 2) are complete and

self-explanatory and include real-world scenarios, tasks and types of sensing data. Therefore,

the relevant content is presented in each chapter separately, including an introduction and

background for the chapter, related works, extracted features, developed models, experimental

settings and results.

https://doi.org/10.1016/j.buildenv.2021.107725


Chapter 2

Data Collection and Ground Truth

Validation

As discussed in Chapter 1, the intelligent analysis and prediction of human behaviours is

very important for a variety of reasons, including improving self-awareness, creating the right

study/work environments and adopting healthier lifestyles. However, collecting sensing data

from different modalities simultaneously requires the consideration of multiple factors (e.g.

privacy, storage and battery) and is very expensive in natural environments. In addition,

generating ground truth annotations of human behaviours and mental states is challenging

due to the nature of these phenomena.

In addressing these issues and in reference to RQ-1, as presented in Section 1.3, this chapter

presents heterogeneous data collection using wearables, environmental sensors and self-report

tools for human behaviours and mental states. Specifically, we conducted a field study at a K–12

private school in the suburbs of Melbourne, Australia. We tracked 23 students and six teachers

in a four-week cross-sectional study, using wearable sensors to log physiological data and self-

report surveys to query the participants’ thermal comfort, learning engagement, emotions and

seating behaviours. The dataset could be used to analyse students’ behaviours/mental states

on campus and provide opportunities for the future design of intelligent feedback systems to

benefit both students and staff.

The reliability of the self-report data of human behaviours and mental states is discussed by

15
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studying the participants’ confidence levels in the responses and the survey completion time.

We find that the physiologically measured and perceived student engagement were not always

consistent. This serves as a wake-up call for emotional and mental state sensing research in the

ubiquitous computing (ubicomp) community, which usually regards self-report annotations as

the ground truth for predicting human mental state.

2.1 Introduction

With advancements in wearables and IoT devices, sensing technologies have been increasingly

investigated for predicting human emotional and mental characteristics in terms of mood [32,

42], depression [43, 44], stress [29], engagement [30, 45, 6], concentration [15], personality traits

[46, 12] etc. Understanding peoples’ engagement, emotions and daily behaviours using sensing

technologies has attracted increasing interest to address problems such as low productivity and

disaffection and could help in designing intervention strategies to prevent mental health issues

and improve people’s wellbeing.

In previous studies, various physiological signals, such as EDA and heart rate variability

(HRV), and environmental data have been investigated to assess emotional arousal and en-

gagement levels. For example, EDA is generally regarded as a good indicator of psychological

arousal, which has been increasingly studied in the affective computing area, such as the de-

tection of engagement [30, 6], emotion [47] and depression[48]. However, existing datasets

in affective computing either provide limited scope for understanding emotional responses in

real-world settings or only consider a particular type of annotation to meet their research goals

(e.g. stress level and mental workload). Therefore, our first aim is to collect a heterogeneous

dataset, including data from wearables, environmental sensors and various annotations of hu-

man behaviours and mental states in real-world settings. Table 2.1 shows how the proposed

dataset En-Gage is distinguished from existing related datasets.

In human-based data collection, one of the most commonly used methods for measuring

emotions and mental state is asking participants to respond to self-report surveys [12, 6, 28]. An

alternative to the self-report survey is the EMA, which is designed to repeatedly collect human

responses in real-time in natural settings. When building an ML prediction model, responses to
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Name Year Par Type Modalities Annotations Duration Scenario

Driving-stress [49] 2005 24 Field ECG, EDA, EMG, RESP Stress level >50 mins Real-world driving tasks

DEAP [50] 2011 32 Lab
Videos, EEG, EDA, BVP,

RESP, ST, EMG and EOG

Arousal, valence, like/

dislike, dominance,

familarity

40 mins Watch music videos

Driving-work [51] 2013 10 Field EDA, HR, TEMP Mental workload 30 mins Drive a predefined route

StudentLife [31] 2014 48 Field Smartphone Stress, mood, happiness 10 weeks Real life, student exams

DECAF [52] 2015 30 Lab
ECG, EMG, EOG, MEG,

near-infrared face, video

Valence, arousal,

dominance
>1 hour

Watch music video and

movie clips

Non-EEG [53] 2016 20 Lab
ACC, EDA, HR, TEMP,

SpO2
N/A <1 hours

Four types of stress

(physical, emotional,

cognitive, none)

ASCERTAIN [54] 2016 58 Lab
ECG, EDA, EEG, facial

features

Arousal, valence,

engagement, liking,

familarity, personality

90 mins Watch movie clips

Stress-math [55] 2017 21 Lab ACC, EDA, HR, TEMP Anxiety
26 hours

(total)

Solve math questions

under varying pressure

WESAD [56] 2018 15 Lab
ACC, BVP, ECG, EDA,

EMG, RESP, TEMP
Affect, anxiety, stress 2 hours

Neutral, amusement and

stress conditions

Snake [57] 2020 23 Lab ACC, BVP, EDA, TEMP
Cognitive load,

personality
>6 mins

Smartphone games with

three difficulty levels

CogLoad [57] 2020 23 Lab ACC, BVP, EDA, TEMP
Cognitive load,

personality
N/A 6 cognition load tasks

K-EmoCon [58] 2020 32 Lab

Videos, audio, ACC,

EDA, EEG, ECG, BVP,

TEMP

Arousal, valence,

stress, affect

173 mins

(total)

Social interaction

scenario involving

two people

En-Gage 2021 29 Field

ACC, EDA, BVP, TEMP,

In. TEMP, HUMID., CO2,

NOISE

Cognitive, behavioral,

emotional engagement,

thermal comfort,

arousal, valence

4 weeks

(1416 hours

in total)

Real-world courses in

a high school

Table 2.1: Publicly available datasets in affective computing

self-report surveys or EMAs are often regarded as a measure of ground truth [29, 6, 30, 31, 32]

and served as the target variables, while the features extracted from sensing data are used as

predictors in ML contexts. The predictor is then mapped to the target variables through the

empirical relationship determined by the data. However, Moller et al. [59] pointed out that

researchers should not trust self-reports blindly but take into consideration that the responses

can be unreliable. Therefore, our second aim is to investigate the reliability of self-report

data. We explore the patterns in the reported confidence level and the survey completion

time and then use the learning engagement as an example to compare the physiologically

measured engagement and the perceived engagement. The main contributions of this chapter

are summarised below:

• We propose the En-Gage dataset [60, 39, 61], which is the first publicly available dataset

created from studying the daily behaviours and engagement of high school students us-
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ing heterogeneous methods. It offers a unique opportunity to analyse the relationships

between indoor climates and the mental state of school students – not only as it relates

to their thermal comfort but also to their emotions, engagement and productivity at

school. This dataset has the potential to greatly benefit building scientists, behavioural

psychologists and affective computing researchers.

• For the first time, we investigate the reliability of self-report data by studying the con-

fidence levels of the self-reported responses. We then compare the confidence levels of

responses with the survey completion time to better understand the reliability of self-

report data. Taking the student learning engagement as an example, we show that the

perceived student engagement and physiologically measured engagement are not always

consistent.

• We note the risk of using subjective annotations as ground truth and discuss the possi-

bility of using physiological signals as objective measures of student engagement.

2.2 Related Work

2.2.1 Inferring Emotions and Mental State using Sensing Technology

In the ubicomp community, many studies have assessed human emotions and mental character-

istics (e.g. engagement [30, 45], stress [29], mood [42, 31] and depression [47, 43]) using sensing

technologies, which provide an attractive alternative to traditional self-report surveys or EMAs.

King et al. [29] proposed a passive sensing framework for detecting stress in pregnant mothers

in the wild, with the micro-EMA questions as a measurable ground truth for stress. Similarly,

Gao et al. [30] predicted student learning engagement using physiological sensing data, with

the adapted In-class Student Engagement Questionnaire (ISEQ) [62] as the ground truth for

learning engagement. Wang et al. [43] tracked depression dynamics in college students using

mobile and wearable sensing approaches, with the Patient Health Questionnaire (PHQ)-4 [63]

and PHQ-8 [64] scores as the ground truth for depression. Zhang et al. [32] detected human

compound emotions from smartphone sensing data, with self-report responses as the ground
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truth for emotions. It has become common practice to regard subjective responses (e.g. EMA

and self-report survey) as the ground truth, and the features extracted from sensing data are

fed into the data-driven model for the prediction of emotions and mental state.

2.2.2 Reliability of Self-report Data

Many researchers have worked on designing or adapting psychological questionnaires to achieve

higher validity and reliability and mitigate response bias [65, 66, 67, 68, 69]. Clark et al. [68]

reviewed recent literature for psychological scale validation, and Huston et al. [69] compared

the reliability of different forms of life satisfaction self-reports. Moller et al. [59] explored the

reliability of self-report responses under different conditions. They conducted a six-week self-

reporting study on smartphone usage. They found that self-reports cannot provide a full view

of user behaviours, and participants sometimes significantly overestimated the duration of app

usage. Although they demonstrated the inaccuracy of self-reports, they made suggestions for

designing a self-report study (e.g. setting reminders and not pressuring participants) instead

of offering solutions to evaluating the reliability of self-reports. In addition, they used survey

questions related to real-world behaviour (e.g. smartphone usage), which is easier to quantify

than subjective attitudes. Wash et al. [26] investigated the agreement between self-reports and

behaviours. They found that security research based on self-reports is unreliable for certain

behaviours, especially when the behavior involves awareness rather than actions because people

are less able to answer those types of questions accurately. They revealed the unreliability of

self-reports by comparing the reported data with the actual behaviours, which supported the

results of Moller et al [59].

In contrast to the above-mentioned studies, this research has several advantages: (1) We

investigate the reliability of self-reported data through the subjective confidence levels provided

by participants. (2) We reveal the risks of using self-reported responses as the ground truth,

especially for sensing emotions in the ubicomp community, by comparing the physiologically

measured engagement and the perceived engagement.
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2.3 Data Collection

The data collection was approved by the Science, Engineering and Health College Human

Ethics Advisory Network (SEH CHEAN) of RMIT University. SEH CHEAN also reviewed

and approved the consent forms for participants and guardians of minors, which included

information on the purpose of and procedures for the research, the types of data to be collected,

the compensation for involvement and the protocols for privacy protection and data storage.

The project was also approved by the principal of the school in which the study was conducted.

2.3.1 Participants and Recruitment

We recruited participants from a K–12 private school in the suburbs of Melbourne (population

700). The recruitment occurred in August and September 2019, and calls for participation

were disseminated through information leaflets, recruitment letters and a presentation in the

school hall, with the assistance of the director teacher of Year 10 (Year 10 is the eleventh year

of compulsory education in Australia). The admission was restricted to Year 10 students and

their teachers whose native language was English or who were bilingual. A total of 23 (15–17

years old, 13 female and 10 male) out of 75 Year 10 students and six (33–62 years old, four

female and two male) out of 12 teachers met the inclusion criteria, volunteered for the study

and signed the consent forms. Since all the student participants were underage, their guardians

also provided signed consent forms. Raw data for n = 23 student participants were properly

recorded and nearly complete (but with different wristband wearing days), constituting the

majority of the En-Gage dataset.

The volunteers were then asked to complete an online background survey, which was ac-

cessible through a web page link that was shared with them. In the survey, we collected

information on the participants’ age, gender, general thermal comfort and classes. The Year

10 students at the school were taught in separate class groups. They were separated into

three Form groups for English, Science, Global Politics, Physical Education and Health/Sport

courses, three Maths groups and four Language groups. Asking for each student’s class group

in the background survey allowed us to determine which classroom they were in at any given

time. Among the participating teachers, there were three math teachers, one English teacher,
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Group Room Participant

Form

R1 P13, P14, P15, P16, P17, P18, P19, P20, P21, P22

R2 P8, P9, P10, P11, P12, P23

R3 P1, P2, P3, P4, P5, P6, P7

Math

R1 P2, P4, P5, P10, P11, P14, P18

R2 P3, P6, P7, P8, P9, P15, P16, P17, P20

R3 P1, P12, P13, P19, P21, P22, P23

Language

R1 P1, P2, P4, P7, P10, P13, P15, P17, P19, P20, P21, P22, P23

R2 P9, P14

R3 P5, P6, P11, P12, P16

R4 P3, P8 P18

Table 2.2: Distribution of student participants in different class groups

one Japanese teacher and one science teacher. Table 2.2 shows the details of room allocation

for participants in different class groups.

As a token of appreciation for their participation, we awarded each participating student

with a certificate of participation and four movie vouchers – one for each week of successful

participation. Participation in this research project was voluntary, and we communicated to

participants that they were free to withdraw from the project at any stage.

2.3.2 Experiment Setup

The study included four weeks of data capture: The first two weeks of data collection started

from 2 September 2019, and the second two weeks of data collection started from 28 October

2019. The data capture was based on data from wearable sensors and weather stations.

In the study, we tracked participant data using Empatica E4 1 wristbands to measure phys-

iological data and daily surveys to query their thermal comfort, learning engagement and

emotions while at school. Overall, we collected 488 survey responses and 1415.56 hours of

wearable data from all participants. During the data collection, one student representative

was selected in each of the three Form classes. Their job was to distribute wristband sensors

each morning, collect them after school and remind participants to complete the online surveys

at the appropriate times. We anonymised the student data by assigning each student an iden-

tity number (ID). Occupancy schedules were obtained from the individual classroom schedules

1Empatica E4 wristband: https://www.empatica.com/en-int/research/e4/

https://www.empatica.com/en-int/research/e4/
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(a) Empatica E4 wristbands (b) Netatmo weather station (c) Classroom for students

Figure 2.1: Devices and environments for collecting wearable and indoor data

provided by the school. These schedules can be used to represent the actual occupancy pat-

terns of the building, although slight deviations from the planned schedule are to be expected

in a school setting due to sickness and other circumstances.

Netatmo Healthy Home Coach. We collected indoor environmental data using Ne-

tatmo Healthy Home Coaches2 installed in the classrooms. These devices measure indoor

temperature, relative humidity, CO2 levels and noise levels at five-minute intervals. The data

was uploaded in real-time via the school’s guest WiFi to the Netatmo cloud platform from

which we accessed the data remotely through our Netatmo account login. The ANSI/ASHRAE

Standard 55 recommends temperature sensor heights of 0.1, 0.6 and 1.1 m for ankles, waists

and heads of seated occupants, respectively. Given these guidelines, since only one device was

installed per room in this study and the head height of students is lower than that of adults,

we attempted to place the sensors at approximately 0.9 m.

Empatica E4 wristband. These wristband sensors (see Figure 2.1a) were first proposed

for use in Garbarino et al. [70]. These watch-like devices have multiple sensors: an EDA

sensor, a PPG sensor, a three-axis accelerometer (ACC) and an optical thermometer. EDA

refers to constantly fluctuating changes in the electrical properties of the skin at 4 Hz; when

the level of sweat increases, the conductivity of the skin increases. PPG sensors measure the

blood volume pulse (BVP) at 64 Hz, from which the interbeat interval (IBI) and HRV can

be derived. The ACC records in the range of (-2g, 2g) at 32Hz and captures motion-based

activity, which has been widely used in smartphones, wearables and other IoT devices [12]. The

2Netatmo Healthy Home Coach: https://www.netatmo.com/en-eu/aircare/homecoach

https://www.netatmo.com/en-eu/aircare/homecoach
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Annotation Description Measurement scale

Thermal sensation ASHRAE thermal sensation [71]
-3: cold, -2: cool, -1: slightly cool, 0: neutral,

1: slightly warm, 2: warm, 3: hot

Thermal preference ASHRAE thermal preference [71] Choose one (cooler, no change, warmer)

Clothing level ASHRAE clothing insulation [71] Choose multiple

Seating position Seating position in the classroom Click one point

Multi-dimensional/

engagement

Adapted In-class Student

Engagement Questionnaires [62]

-2: strongly disagree, -1: somewhat disagree,

0: neither agree nor disagree, 1: somewhat

agree, 2: strongly agree

Arousal/Valence
Affective dimensions from the

Photographic Affect Meter [72]
Choose one photo

Confidence level Confidence level of the response

1: not confident, 2: slightly confident, 3:

moderately confident, 4: very confident, 5:

extremely confident

Table 2.3: Collected annotations from the questionnaires

optical thermometer reads peripheral skin temperature (ST) at 4 Hz. In recording mode, E4

wristbands can store 60 hours of data in memory, with a battery life of over 32 hours. They are

lightweight, comfortable and waterproof and were thus especially suitable for the continuous

and unobtrusive monitoring of the participants in our study. Before the data collection, all

wristbands were synchronised with the E4 Manager App, using a single laptop to ensure that

the internal clocks were accurate. Each student was assigned a wristband sensor marked with

their unique study ID. The students were asked to wear the wristband on their non-dominant

hand and to avoid pressing the button or performing any unnecessary movements during class.

The teacher participants were only required to wear the wristbands while teaching the year 10

classes.

Daily surveys. On each school day, student participants were asked to complete online

surveys (either through tablets placed in each classroom or using their own digital devices) at

11:00, 13:25 and 15:35 (directly after the second, fourth and fifth class). The length of the

second and fourth class was either 40 min or 80 min, depending on the day of the week, and the

fifth class always lasted 80 min. The curriculum in this school had a bi-weekly rhythm, i.e. the

first and second weeks had different class schedules, but the first and third weeks were identical,

as were the second and fourth weeks. The student representative was tasked with reminding

the student participants to complete the online surveys on time, as described in Table 2.3.

The online questionnaire included 11 items related to the students’ psychological state and
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Figure 2.2: Distribution of responses related to thermal comfort
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(c) Overall engagement across participants

Figure 2.3: Distribution of responses related to engagement and emotions

behaviours (e.g. thermal comfort, student engagement and emotions). All the items (except

the seating position and confidence level) were used directly or slightly adapted from validated

questionnaires widely used by researchers in this area. Figure 2.2 shows the distribution of

responses to the thermal sensation (from –3 to 3), thermal preference and clothing level. The

distribution of multidimensional engagement (behavioural, emotional and cognitive) is shown

in Figure 2.3b, and the overall engagement across participants is shown in Figure 2.3c. Figure

2.3a shows the distribution of emotions in the valence and arousal dimensions. The numbers

indicate the percentage frequencies, and the darker the colour, the higher the frequency of the

specific emotion (e.g. arousal = 1 and valence = 2).

Figure 2.4a shows the distribution of survey responses throughout the day. As students

were requested to submit their self-reports directly after the second, fourth anf fifth class (i.e.

11:00, 13:25 and 15:35, respectively), most responses were submitted 11:00–12:00, 13:00–14:00

and 15:00–16:00. The survey responses that were recorded before the start of the targeted class
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Figure 2.4: Distribution of the survey responses across hours of the day and days of the week

or after the start of the next class should be removed if we aim to explore student engagement

in the targeted class. However, if we wish to study thermal comfort, clothing insulation,

emotion or confidence level, all the survey responses can be kept. Next, we explored the

distribution of the survey responses through the week (see Figure 2.4b). We found that most

students submitted their responses on Monday or Thursday. The number of students who

submitted self-report data on Wednesday was the lowest. The potential reason for this may be

that students forgot to submit their responses, as they took breadth studies on a Wednesday

(normal studies on the other weekdays).

2.4 Reliability of Self-Report Data

2.4.1 Confidence Level of Responses

During the data collection process, we collected the participants’ confidence levels in the self-

reports. Figure 2.5 shows the distribution of the confidence levels of the participants. We

can see that most participants have a moderate degree of confidence in their responses, but a

small number of participants (whose confidence level is 1 or 2) are not very confident in their

responses.

Then, we explored the difference in confidence levels between participants and whether the

confidence level of the same participant changes over time. Figure 2.6 shows the box plot of

confidence level for each participant. We discovered that different participants tended to have

very different confidence levels. For example, some participants (e.g. P1 and P20) were usually
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Figure 2.5: Distribution of confidence levels for all self-report responses
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Figure 2.6: Confidence levels across all participants

strongly confident in their self-report responses, while some participants (e.g. P10, P12 and

P15) were generally not very confident in their responses. In addition, some participants (e.g.

P1, P20 and P15) tended to have similar confidence levels in longitudinal studies, but some

participants (e.g. P16 and P3) had very different confidence levels at different times during

the data collection process. The above phenomena are in line with our daily experience.

2.4.2 Completion Time and Reliability

Malhotra et al. [73] found that the survey completion time is an indicator of response quality,

although it is affected by multiple factors and varies from person to person. For each self-report

questionnaire, the completion time was automatically recorded and collected by the Qualtrics
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Figure 2.7: Survey completion time of participants

Figure 2.8: Linear regression of survey completion time with confidence levels

timing question, which is a hidden question added to the questionnaire to track the time spent

by the respondent on that page.

Figure 2.7 shows the survey completion time for all participants. We can see that different

participants had very different survey completion times. Most participants completed the

survey in 30–50 s; however, some participants (e.g. P17) spent a lot more time completing the

survey, and some participants (e.g. P10 and P12) completed the survey in a very short time.

We then studied whether the survey completion time was correlated with the confidence

levels. Figure 2.8 shows that the survey completion time was positively correlated with the

confidence level. Participants with longer survey completion times tended to have a higher

confidence level in the survey. We also investigated how the confidence levels were correlated
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Figure 2.9: The distribution of overall engagement across student participants

with other factors, such as the time of the day and the day of the week, but we did not find any

significant correlations. In future research, it would be interesting to use survey completion time

as an indicator of survey reliability and assign appropriate weights to self-reported responses

for more accurate mental state predictions.

2.4.3 Perceived vs Physiological Measurements

To calculate the perceived engagement scores, we reversed the responses in item 2 and item

4 and calculated an average score based on the 5-point Likert scale for each dimension of

engagement (please refer to Table 3.2 for details on questions to measure engagement). We then

calculated the overall engagement scores based on all five items, where 1 indicated the lowest

level of engagement and 5 the highest. Figure 2.9 shows the distribution of overall perceived

engagement across student participants. We can see that different participants tended to

have very different levels of perceived engagement. Some participants (e.g. P1, P9 and P14)

were usually highly engaged in class while some participants (e.g. P8) had low engagement

levels. Gao et al. [30] built an engagement prediction model, with perceived engagement being

regarded as the ground truth.

Physiological signals (e.g. EDA, HRV and ST) have been explored in previous studies for

predicting student engagement levels [30, 6]. For example, the EDA level is usually considered

a good indicator of physiological and psychological arousal (e.g. student engagement [30] and

emotional state [6]). Increased heart rate indicates increased effort and is used as an indirect
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Figure 2.10: An example of the changes in electrodermal activity of three different participants,
P15, P17 and P20, in the same class (their perceived engagement levels were 4.2, 3.2 and 4.4,
respectively)

measure of engagement [74]. It has been shown that changes in heart rate are related to the

intensity of mental efforts and demands of information processing. In addition, changes in skin

temperature have been shown to be correlated with social context and mood [75].

Figure 2.10 shows an example of changes in EDA for different participants in the same

class. It can be seen that the EDA signals of the first two participants are very similar, and

there is strong physiological synchrony [76] between them. Physiological synchrony refers to

the association or interdependence of physiological activity between two or more individuals,

which has been observed in many scenarios. Physiological synchrony between individuals can

be indicative of group engagement [76] and has been used to measure the emotional climate of

a classroom [7] and quantify participants’ agreement on self-reporting engagements [28].

In Figure 2.10, strong physiological synchrony between P15 and P17 indicates that they

had similar engagement patterns. In addition, it is likely that they were both highly engaged:
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(1) Their EDA signals have multiple peaks at a similar time, which is a good indicator of

emotional arousal. (2) If they were not engaged in class, the changes in their EDA should

be more random, instead of being similar. It is likely that participant P20 had lower levels

of engagement than participants P15 and P17 since the EDA signal was more random with

fewer peaks than the other two participants. However, based on the self-report responses,

the engagement score of participants P15, P17 and P20 were 4.2, 3.2 and 4.4, respectively.

From this example, it is possible to deduce the following: (1) Participants with very similar

physiological patterns may have very different perceived engagement annotations (e.g. P15

and P17). (2) Participants with very similar annotations may have very different physiological

patterns (e.g. P15 and P20).

2.4.4 Discussion

Self-reporting is one of the most common ways to study psychological state and attitude in

human-based studies. In affective computing, self-report annotations are usually believed to be

the ground truth for predicting human mental state using sensing technologies. In recent years,

data-driven models have been built using self-reported data as the target variable. However,

self-reported data is prone to subjectivity and response bias, making it risky and inaccurate

for use as the ground truth in predicting the psychological state (e.g. emotion, depression and

engagement) from sensing data.

Using experiments, we investigate the reliability of self-reported data in the wild from two

perspectives: (1) For the first time, we study the confidence level of the self-report responses

of participants and compare the confidence level with the survey completion time to better un-

derstand the reliability of self-reported data. (2) To the best of our knowledge, we are the first

researchers to compare the perceived and physiological measures of student engagement. From

our experiment, we found that the perceived self-report engagement was not always consistent

with the physiologically measured engagement. Participants with similar physiological pat-

terns may report very different perceived engagement and participants with similar self-report

annotations may have very different physiological patterns. By contrasting the self-report and

physiological measures, we reveal the potential risks of only using subjective annotations as
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the ground truth.

2.5 Conclusion

In this chapter, we addressed the challenges of the limited sources of sensing data and the

difficulties in validating the ground truth in human behaviour sensing studies. The released

dataset En-Gage is the first publicly available dataset for studying the daily behaviours and

engagement of high school students using heterogeneous sensing. With this dataset, various

data mining (e.g. segmentation [77], clustering [78, 79]) and modelling techniques [80, 81, 82])

could be explored to build prediction models for measuring people’s mental state using sensor-

based physiological and behavioural recordings in buildings. This could be further used for

various applications in future studies: (1) Monitoring signs of disengagement and negative

emotions of students [30, 15]: Measuring the study engagement and emotions of students

is beneficial to both teachers and students. Teachers will be able to improve their teaching

strategies to create the right learning environment, improve the learning experience for students

and re-engage students with low engagement [7, 30]. Students will be able to self-track their

learning engagement and emotions, which could promote their self-regulation and reflective

learning. (2) Studying peer effects in educational settings [83]: It could be helpful to explore

group-wise seating behaviours [84, 85] and their relationship to perceived engagement and

physiological synchrony [40]. (3) Providing comfortable indoor environments for people: It

is possible to mitigate the negative effects of hot weather on student learning by using air

conditioning [86], and teachers could ventilate their classrooms timeously to prevent excess

carbon dioxide from affecting students’ concentration [87, 88, 89].

In addition, the analysis of the reliability of self-reported data is a very promising step

towards validating ground truth in human behavioural studies. It serves as a wake-up call for

the emotional and mental sensing research that usually regards self-report annotations as the

ground truth for predicting the human mental state. This raises questions, such as, why would

students feel more engaged in class if their bodies indicate otherwise? Should we trust their

subjective self-report responses more than their objective physiological responses? Is there

a better way to understand and model the human mental state than only using self-report
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annotations as the ground truth? We hope that more research will explore this issue in the

future.



Chapter 3

Modelling User Engagement

Behaviours from Wearable and

Environmental Sensors

Using the dataset introduced in Chapter 2, this chapter aims to explore wearable and envi-

ronmental sensing data to understand student engagement in the wild. The study of student

engagement has attracted growing interest to address problems such as low academic perfor-

mance, disaffection and high dropout rates. In relation to RQ-2, this chapter investigates

whether we can infer and predict engagement on multiple dimensions only using wearable

and environmental sensors. We hypothesise that multidimensional student engagement can

be translated into physiological responses and activity changes during class and is affected

by environmental changes. We present n-Gage, a student engagement sensing system using

a combination of wearable and environmental sensors to automatically detect students’ in-

class multidimensional learning engagement. Extensive experimental results have shown that

n-Gage can accurately predict multidimensional student engagement in real-world scenarios,

with an average mean absolute error (MAE) of 0.788 and root mean square error (RMSE) of

0.975 using all the sensors. We will present a set of interesting findings on how different factors

(e.g. combinations of sensors, school subjects and CO2 levels) affect each dimension of student

33
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learning engagement.

3.1 Introduction

In education, student engagement refers to the degree of attention, interest, curiosity, and

involvement in the learning environment [90]. The study of student engagement has attracted

growing interests as a way to address the problems of low academic achievement, high levels

of student boredom, disaffection, and high dropout rates in urban areas [91, 92]. Previous

research showed that student engagement declines as students progress from elementary to

middle school, reaching its lowest levels in high school [93, 94]. Marks et al. [94] estimated

that as many as 40-60% of high school students are disengaged (e.g., uninvolved, no interests

and not attentive). The consequences of disengagement for high school students are severe.

They are less likely to graduate from high school and face limited employment prospects,

increasing risks for poverty, poorer health, and involvement in the criminal justice system [95].

In view of the negative impact of disengagement, more and more researchers, educators and

policymakers are interested in obtaining data on student engagement and disengagement for

needs assessment, diagnosis, and preventive measures [93].

Generally, student engagement is defined as a meta-construct that includes three dimen-

sions [91, 92]: (1)behavioural engagement focuses on participation and involvement in academic,

social, and co-curricular activities. Some researchers define behavioural engagement with re-

gards to positive conduct, e.g., following the rules, obeying the classroom norms, and the

absence of disruptive behavior such as skipping school [92, 96, 97]; (2) emotional engagement

focuses on the extent of positive and negative reactions to teachers, classmates, academics,

and school, which includes a sense of belonging or connectedness to the school [92, 98]; (3)

cognitive engagement focuses on students’ level of investment in learning, which includes be-

ing thoughtful, strategic, and willing to put efforts to comprehend complex ideas or master

difficult skills [91, 92, 99]. One of the most common method for measuring student engage-

ment is self-report surveys (e.g., Learning Questionnaire (MSLQ) [100], School Engagement

Meausre (SEM)-MacArthur [101], and Engagement vs. Disaffection with Learning (EvsD)

[102]). Though generally reliable, surveys are usually time-consuming and can be a burden for
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participants if they need to complete the survey for each class.

Therefore, we want to investigate whether we can infer and predict student multidimen-

sional engagement just using sensors. In particular, we conduct the research around the hy-

pothesis that student multidimensional engagement level can be translated into physiological

responses and activity movements during the class, and also be affected by the environmental

changes. In previous studies, multiple physiological data (e.g., electrodermal activity (EDA),

heart rate variability (HRV), accelerometer (ACC) data, skin temperature (ST)) and environ-

mental data have been explored to assess the emotion arousal and engagement in different

scenarios. For instance, EDA is usually considered as a good indication of psychological or

physiological arousal (e.g., emotional and cognitive states) [103, 104], which has been increas-

ingly explored in affective computing such as the detection of emotion [47, 105], depression [48]

, and engagement [6, 106, 107]. Recently, Pflanzer et al. [108] stated that EDA monitoring

should be combined with the recording of heart rate and blood pressure because they are all au-

tonomically dependent variables. Heart rate data has been used to predict student engagement

in a structured writing activity [109] and the correlation of heart rate and student cognitive

and emotional engagement has been found in [62]. As the most commonly used sensors in

IoT devices, the accelerometer is proven to be a powerful tool for the quantification of human

behavioural patterns [31, 12]. Von et al. [110] used accelerometer sensors to demonstrate

how large groups of people moving in sync can enhance group affiliation. Accelerometer-based

features have been analyzed to sense children’s engagement during a performance using inter-

personal movement synchrony [111].

In this chapter, our aim to explore the following questions: 1. Can we measure the multi-

ple dimensions of student’s learning engagement including emotional, behavioural and cognitive

engagement in high schools with sensing data in the wild? 2. Can we derive the activity, physi-

ological, and environmental factors contributing to the different dimensions of student learning

engagement? If yes, which sensors are the most useful in differentiating each dimension of

the learning engagement? To answer the above questions and enable automated engagement

detection, we present a new classroom sensing system n-Gage to assess the behavioural, emo-

tional and cognitive engagement level of students. The system utilizes sensing data from two
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sources: (1) wearable devices capturing physiological and physical signals (e.g., EDA, HRV,

ACC); (2) indoor weather stations capturing environmental changes (e.g., temperature, CO2,

sound). The study has been approved by the Human Research Ethics Committee at RMIT

University and the high school where it is conducted, and the procedures follow the ethical

codes. In summary, the contributions of this work is as below:

• We build n-Gage, a classroom sensing system to automatically measure the multidi-

mensional engagement (behavioural, emotional and cognitive engagement) of high school

students during the classes. In particular, we combine physiological signals, physical

activities, and indoor environmental data together to estimate the changes of student en-

gagement levels. To the best of our knowledge, this is the first system to detect student

engagement from multiple sensors in the wild.

• We extract new features to represent the physiological and physical synchrony between

students which proved to be useful for the student engagement prediction. We also for

the first time extract features from skin temperature and indoor environment for effective

engagement estimation.

• We conduct comprehensive experiments to predict the multidimensional student engage-

ment scores with LightGBM regressors. Experiment results show that n-Gage achieves

high accuracy for student engagement. We also derive the different factors and explore

the most useful sensors in differentiating each dimension of the learning engagement.

• We show a set of interesting insights into how different factors affect student engagement.

For example, CO2 level in the classroom has negative effects on students’ cognitive en-

gagement, which highlights the need to timely ventilate the classroom for improving

student engagement.
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3.2 Related Work

3.2.1 Traditional Methods for Measuring Engagement

In the education area, there are various methods as follows to study student engagement.

(1) Student self-report is the most common method to assess student engagement as it is

easy to execute in classroom settings. Students are provided with items reflecting different

dimensions of engagement and then select the response that best describes them [92]. However,

the self-report survey is labour and time-consuming and students may not willing to answer

too many questions honestly at a time, leading to low-quality responses [112]. (2) Experience

sampling [113, 114] allows researchers to collect engagement data at the moment, which reduces

the problems of recall-failure and social-desirability bias happened in the self-report surveys.

However, it requires a huge time investment from students and the quality of responses largely

relies on the students’ willingness and ability to answer [92]. (3) Teacher ratings of students

[92] can be useful for young students with difficulty in completing self-report surveys. Behavior

can be observed directly from teachers but emotion engagement is difficult to be observed as

students may learn to mask their emotions [92, 115]. (4) Interviews can provide a detailed

description of the student’s performance during the learning process. However, the quality

of responses depends on the expert knowledge from the interviewers. (5) Observation [92]

on the individual students or whole students in the classroom have been developed to assess

engagement, which can be time-consuming for the administer and all kinds of academic settings

need to be considered to get an accurate picture of student behaviour. The reliability of the

observations can be doubtful as they only provide limited information about students.

All the traditional methods for engagement measurement have strengths and limitations in

different situations. Overall speaking, traditional methods are usually time-consuming and the

quality of answers largely depends on the students, teachers or executor. Recently, with the

development of wearables and IoT sensors, some initial progress has been explored to measure

student engagement with their physiological data which is more subjective and obtrusive to

students.
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Table 3.1: Related work for engagement prediction with sensing data

Prediction Data source Participants Data Sessions

Audience Engagement [111] ACC data
10 children audience
in art performance

not stated

Social Engagement [106] EDA data (wristband)
Children during social
interactions

51 sessions

Game Engagement [45] EDA, PPG data
10 players in 6 mobile
games in natual settings

not stated

Audience Engagement [28] EDA, PPG data
10 attendess and 19
presentors in presentations

40 sessions

Student Engagement [116] Video, audio data
25 university students
in 5 classrooms

not stated

Student Engagement [109] Video, heart rate data
23 university students
in laboratory settings

not stated

Student Engagement [117] EDA data (hand sensor)
17 undergraduate students
in climate science classes

not stated

Student Engagement [118] EDA data (hand sensor)
17 university students in
learning environments

not stated

Emotional Engagement [6] EDA data (wristband)
27 university students in
41 lectures over 3 weeks

197 sessions

Student Multidimensional
Engagement (this work)

EDA, PPG, ST, ACC,
CO2, Noise, etc.

23 high school students in
98 classes over 4 weeks

331 sesssions

3.2.2 Engagement Prediction with Sensing Technology

Sensing technologies are becoming prevalent to assess people’s mental characteristics (e.g.,

engagement [6, 106, 111, 119, 45], mood [42, 31], stress [47, 31], personality [12]) and have

provided an attractive alternative to traditional self-report surveys. Wang et al. [31] gathered

students’ mental health data such as mood and stress from self-report surveys in Dartmouth

college. They also recorded students’ activity data from passive sensors and found a significant

correlation between the sensor data and mental health. Morshed et al. [42] predicted mood

instability only using sensed data from mobile phones and wearable sensors for individuals

in situated communities. Wang et al. [120] predicted human personality traits from passive

sensing data from mobile phones using within-person variability features such as regularity

index of physical activity, the circadian rhythm of location.

Physiological sensors and accelerometers have been explored to assess human’s engagement

(see Table 3.1), such as assessing audience engagement during the art performance, social

engagement for children during the interaction with adults [106], emotional engagement for
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university students during lectures [6].

Ahuja et al. [116] built a classroom sensing system using a distributed array of commodity

cameras. Students’ and instructor’s video and audio were captured for body segmentation and

speech detection. Then, the students’ engagement levels were analyzed from featured data

such as hand raising, smile, sit/stand classification. However, as reported from authors, this

system would bring privacy concerns when capturing audio and video data. Similarly, Hutt et

al. [119] used the commercial off-the-shelf eye-trackers to automatically detect mind wandering

for high school students and Monkaresi et al. [109] used heart rate and video-based estimation

of facial expressions to predict the engagement of 23 university students during a structured

writing activity in laboratory settings. Besides the privacy concern, the questionnaire is very

simple and only asked participants to report whether they are engaged or not.

Only a few studies investigates student engagement in the real-world settings [117, 118,

62, 6]. Mcneal et al. [117] used EDA hand-sensor to measure the engagement from 17 under-

graduate students in classrooms emphasizing climate science during a semester. They explored

different teaching approaches on a subset of students and reported the statistical results for

the mean of the EDA traces. Contrast to their studies, we collected a far more heterogeneous

data set and novel features were proposed based on different physiological indices. Wang et

al. [118] studied 17 university students’ engagement in the distributed learning environment

with the EDA hand sensor and they found that EDA sensor measurements were aligned with

surveys. Different to us, they only used a very simple question ‘how much did you enjoy during

the lecture as the ground truth of students’ engagement ’.

In recent years, researchers have started to explore the different dimensions of engage-

ment using physiological signals. Lascio et al. [6] predicted university students’ emotional

engagement from EDA sensors in lectures during 3 continuous week data collection. While in

our data collection, we build an in-class multidimensional (behavioural, emotional, cognitive)

engagement sensing system including physiological responses (i.e., EDA, HRV, ST), physical

movements (ACC) and indoor environmental sensors (i.e., CO2, temperature, humidity, sound

stream) for high school students. Furthermore, the high school classes are very different from

lectures at university in [6] (e.g., degree of freedom to choose courses, ability to schedule classes
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flexibly, requirements of class attendance, consistency of subjects between different schools),

which may lead to very different multi-engagement distribution in high school classes. Another

similar study was proposed by Huynh et al. [45] who measure the engagement level of game

players using multiple sensors. Though they agreed that user engagement includes behavioural,

emotional and cognitive dimensions, they did not differentiate each dimension when predicting

the engagement during the game. Nevertheless, in our study, we derive the different factors and

most useful sensors contributing to the different dimension of student learning engagement.

In summary, different from the previous efforts, our work has following advantages: (1)

we use far more heterogeneous data for engagement prediction (other works only use EDA

or heart rate data except [45]); (2) we propose and extract more meaningful features from

physiological signals while [118, 117, 62] only use the simple average value of data); (3) to the

best of knowledge, we are the first to predict the engagement for all three dimensions based on

education research while previous research has either measured the simple general engagement

or a single dimension of engagement [6]), and derive the most useful sensors in differentiating

each dimension of engagement; (4) we adopt the real-world classroom settings and take the

influence of environmental changes into account.

3.3 Dataset

We conducted a field study in a private high school for 4 weeks in 2019. The data collection

has been approved by the Human Research Ethics Committee at our University. The details

for the data collection have been introduced in Chapter 2. Here, we will briefly describe the

participants, procedures and collected data.

3.3.1 Participants and Procedures

In total, we have recruited 23 students (13 females and 10 males, 15-17 years old) and 6 teachers

(4 females and 2 males, 33-62 years old) in Year 10. Before the data collection, all wristbands

were synchronized with the E4 Manager App. 1 Netatmo weather station was installed and 1

tablet was put on the teacher desk in each classroom. Students were asked not to unplug the
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Netatmo stations during the data collection.

The first two weeks of data collection occurred in early September (winter in the southern

hemisphere), and the next two weeks of data collection completed in November (spring in the

southern hemisphere). We collected data from two different seasons to build a more robust

engagement sensing system. As we know, different seasons usually result in different indoor

environments (e.g., indoor temperature, humidity), which may affect students’ sweat level

(EDA, ST) and activity level (ACC, HRV). If we use the data from one season to build the

engagement prediction model, the prediction performance can be greatly reduced in another

season due to changes in activity, physiological, and environmental data.

During the data collection, student participants were distributed with the wristband at 8:50

before the first class started at 9:00. Then at the end of the school day (i.e., 15:35), student

participants were reminded to hand in wristbands. On each school day, student participants

were asked to complete the online surveys (either through the public tablets or their own digital

devices) at 11:00, 13:25, 15:35 (right after the 2nd, 4th, 5th class). The length of 2nd and 4th

class can either be 40 minutes or 80 minutes on the different school day and the 5th class

always lasts for 80 minutes. From the class table for Year 10 students, they have the same

class schedule on the 1st week and 3rd week, and another class schedule on the 2nd and 4th

week. However, considering that it could be a burden for some participants to complete the

survey three times a day, we did not require students to complete the survey, which helps us

ensure the quality of survey responses. By the end of the 4th week, we had received 488 valid

responses in total and the response rate is 35.3%.

3.3.2 Collected Data

3.3.2.1 Physiological and Activity Data

During the school time, we asked participants to wear Empatica E4 1 wristbands as shown in

Figure 2.1a, first proposed in [70]. E4 wristband is a watch-like device with multiple sensors:

electrodermal activity (EDA) sensor, photoplethysmography (PPG) sensor, 3-axis accelerom-

eter (ACC), and optical thermometer. EDA depicts constantly fluctuating changes in skin

1Empatica E4 wristband: https://www.empatica.com/en-int/research/e4/

https://www.empatica.com/en-int/research/e4/
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Figure 3.1: Temperature and CO2 data in R1, R2, R3 (room 1, room 2, room 3) at 11:00 am
on 11 Sep 2019. Room 4 is not shown here as it is in another building

electrical properties at 4 Hz. When the level of sweat increases, the conductivity of skin

increases. PPG sensor measures the blood volume pulse (BVP) at 64 Hz, from which the

inter-beat interval (IBI) and heart rate variability (HRV) can be derived. ACC records 3-axis

acceleration in the range of [-2g, 2g] at 32Hz and captures motion-based activity. The optical

thermometer reads peripheral skin temperature (ST) at 4 Hz.

3.3.2.2 Indoor Environmental Data

We collected indoor environmental data from the Netatmo Healthy Home Coach 2 - a smart

indoor weather station - installed in the classrooms as shown in Figure 2.1b and Figure 2.1c.

The Netatmo station can collect indoor temperature (TEMP), humidity (HUMID), CO2 and

sound (SOUND) in every 5 minutes. Real-time data can be uploaded to the Cloud continuously

through the Guest WiFi covered on the campus. Figure 3.1 shows the indoor temperature and

CO2 level in three rooms at 11:00 am on 11 Sep 2019. We can clearly see that the temperature

of room 3 is only 12.3 ℃ and much lower than the comfortable warmth (18 ℃) defined by

the World Health Organization’s standard [121], which may negatively affect student learning

in class [122]. Furthermore, CO2 levels in room 2 and room 3 are beyond 2000 ppm, which

has been proved to have a negative influence on the student cognitive load in the classroom

[123, 124]. Based on previous studies [125], students may become sleepy and inattentive during

the class when the CO2 level is too high.

2Netatmo Healthy Home Coach: https://www.netatmo.com/en-eu/aircare/homecoach

https://www.netatmo.com/en-eu/aircare/homecoach
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Table 3.2: Self-report items for measuring in-class engagement in online survey

Questions (please describe your engagement in the last class) Subscales

1. I paid attention in class. Behavioural
2. I pretended to participate in class but actually not. Behavioural (-)
3. I enjoyed learning new things in class. Emotional
4. I felt discouraged when we worked on something. Emotional (-)
5. I asked myself questions to make sure I understood the class content. Cognitive

Note: (-) means the reversed score.

3.3.2.3 Ground Truth: Self-report Survey Instrument Data

In this study, we choose to use self-report survey to gather subjective measurements of students’

in-class engagement. As discussed in Section 3.2, the self-report survey is the most common way

to measure student engagement as they can reflect students’ subjective perceptions explicitly.

Instead, measures relying on experience sampling, teacher ratings, interviews or observations

have been reported to be easily affected by the external factors. The questionnaire includes

5 items related to behavioural, emotional, and cognitive engagement of the validated In-class

Student Engagement Questionnaires (ISEQ) [62], which has been proved to be effective for

measuring multidimensional engagement compared to the traditional long survey. Similar

to [6, 45], we slightly adapted survey questions from university lectures to high school class

context to make the survey easier for students underage to understand. Moreover, for cognitive

engagement measurement, we did not use the original question ‘the activities really helped my

learning of this topic’ in [62], considering that some classes in high school do not have in-

class activities. Instead, we use the well-accepted item ‘I asked myself questions to make

sure I understood the class content ’ [101], which is a good reflection of cognitive engagement.

Table 3.2 shows the questionnaire used for measuring multidimensional student engagement in

class, where item 1,3 and 5 assess the behavioural, emotional and cognitive engagement, item

2 and 4 indicate the behavioural and emotional disaffection [102, 62] .

In the questionnaire, each item 3 is rated with a 5-point Likert-scale from -2 to 2, which in-

dicates ‘strongly disagree’, ‘somewhat disagree’, ‘neither agree nor disagree’, ‘somewhat agree’

3In the survey, participants were also asked to report their thermal feelings and mood using the Photographic
Affect Meter (PAM) [72]. Nevertheless, this data was not considered in this research.
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Figure 3.2: Histograms of the Answers. The X axis shows the 5-Likert scale from -2 to 2 which
means ‘strongly disagree’ to ‘strongly agree’. The Y axis shows the number of the responses
that fall into the specific scale

and ‘strongly agree’. Figure 3.2 shows the distribution of responses for each item from total 488

responses. The online self-report survey is constructed with the external tool named Qualtrics

4. Participants were asked to complete the survey on the public tablets or their digital products

with the given survey link generated by Qualtrics.

3.4 Data Preprocessing

In this section, we extract class periods based on students’ accelerometer data with the unsu-

pervised time series segmentation method. Then we introduce the data cleaning process and

data pre-processing technique for electrodermal activity, blood volume pulse, accelerometer

data, and skin temperature data.

For data preparation, we only keep the data between 9:00 am to 15:35 pm, which corre-

sponds to the start time of the first class and the end time of the last class. In addition, some

students may have several data recording segments during the same day due to the unexpected

closure and re-open of the wristband. We drop the data segments that are less than 15 seconds

in length, which is less helpful for extracting useful information. We also discard the data on

Tuesday in the last week because students had trip travel and did not have classes on that day.

4Qualtrics: https://www.qualtrics.com/au/

https://www.qualtrics.com/au/
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Figure 3.3: Calculated class end time with ACC data from 12 student participants

3.4.1 Class Period Segmentation

As described in Section 3.3, student participants wear wristbands all day along and teachers

participants are only asked to wear the wristband at their classes. Participants report their

engagement for the 2nd, 4th, 5th classes of the day during recess time, lunchtime and before going

home. Though the scheduled class start/end time is already known, teachers may start/finish

the class a bit earlier or later than the scheduled time. The accurate class time is significant for

wearable data analysis because participants may have very different physiological/movement

patterns between in-class and after-class. For instance, increased activity level after class may

lead to a higher value of EDA (due to the higher level of sweat) and variation of accelerometer

data.

To get the exact class start/end time for meaningful data analysis, we segment the ac-

celerometer data from student participants based on the assumption that students usually

have different activity patterns before/after class. Information-Gain based Temporal Segmen-

tation (IGTS) [126, 127] is applied on the ACC data to calculate the class start/end time.

IGTS is an unsupervised segmentation technique, aims to find the transition times in human

activities, which is suitable for dividing the boundary between in-class and out-class [126].

Topdown optimization is adopted in the ACC time-series segmentation. To calculate the class

boundary, we choose the ACC time-series from 5 minutes before the class to 5 minutes after

the class. Take calculating the actual class end time as an example, from Figure 3.3, there

are 12 participants in a class and the scheduled class end time is 13:25 (green vertical dashed
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line). Applying IGTS on the ACC data, we can get 12 different estimated class end time from

12 ACC traces. Then, the median time is chosen as the calculated class end time (red vertical

dashed line). That is to say, this class finishes early than the scheduled time. We apply IGTS

on all the class data and extract the exact class start time and end time for the later data

analysis.

3.4.2 Data Cleaning

Before pre-process the collected data, a data cleaning stage needs to be conducted to remove

noises from wearable data. As describe in [47, 6, 106, 28, 104], there are several kinds of noises

commonly happened in data collection from E4 wristband: (1) flat responses (i.e., 0 micro

siemens) due to poor contact between the sensors and the skin. If the contact is not tight

enough, the sensor will not measure anything; (2) abrupt signal drops due to the movement

of the sensor (e.g., participant bumps the wristband onto the desk); (3) quantization errors.

Since the EDA sensor records data through the two electrodes, it is more susceptible to noises

compared with ACC, PPG and ST sensors. Therefore, we clean the data set mainly based on

the quality of EDA data.

Firstly, we remove the data when students did not wear wristbands during the whole class

or closed off the wristbands unintentionally during the class. Similar to [28], we then discard

the signals containing a huge number of flat responses, abrupt signal drops and quantization

error as suggested in [106, 104]. Finally, we discard the data on students who did not complete

the survey. The data cleaning stage leaves us with 331 class data sessions. The final wearable

data are gathered from 23 students and 6 teachers in 105 classes. 59 classes are short classes

(mean = 39.15 minutes, STD = 1.15 minutes) and 46 classes are long classes with 2 periods

(mean = 78.21 minutes, STD = 4.33 minutes).

The data cleaning stage eliminates 157 class data sessions due to the lack of survey data,

which takes up to 32.17% of the total data with completed surveys. Though the amount of

eliminated data is large, the size of our collected data is comparable and even larger than the

previous studies. For instance, Lascio et al. [6] used 197 EDA data sessions after a reduction

up to 37%, Gashi et al. [28] used 40 presenter-audience EDA pairs with the elimination of
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72 pairs. Hernandez et al. [106] used 51 data sessions with the elimination of 28% from the

original data.

3.4.3 Data Pre-processing

The pre-processing procedure is crucial to improve the quality of collected data. For EDA

signals, we follow the same pre-processing steps as suggested in [6, 28, 106]. (1) Artifacts

removal. To mitigate the influence of motion artifacts (MAs), we apply a median filter on

EDA data with a 5-second window as in [6]. (2) Decomposition. EDA signal combines a tonic

component and a phasic component [104, 128]. The tonic component varies slowly and reflects

the general activity of sweat glands influenced by the body and environmental temperatures.

The phasic component indicates rapid changes and is related to the responses to internal and

external stimuli. EDA signals are decomposed using convex optimization via the cvxEDA

approach [129]. (3) Normalization. The amplitude of the EDA signal varies a lot among

different people [128] and thus limits the possibility of comparing the signal directly. We

normalize the mixed, tonic and phasic EDA values similar to [28].

PPG data, also known as BVP, is provided by the E4 wristband. Similar to [45], we extract

IBI signals by detecting the systolic peak of the heartbeat waveform signals from the raw PPG

data (window size = 0.75 seconds). Linear interpolation is applied when the heartbeat intervals

can not be detected successfully from the low-quality (e.g., motion artifacts) PPG signal. For

the ACC data, we calculate the magnitude of 3-axis accelerations as |a| =
√
x2 + y2 + z2.

Then a median filter with 0.2 seconds is applied to the magnitude value. Finally, we apply a

median filter on the ST data with 0.5 seconds.

3.5 Feature Extraction

We use various sensing devices to infer multidimensional engagement level of high school stu-

dents. Table 3.3 summarizes these features. Then, we introduce the computed features and

discuss why we explore such sensors and features.
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Table 3.3: Description of the features computed for different sensors

Sensors Feature name Description of features

EDA

eda/tonic/phasic avg Average value for the raw, tonic, phasic data
eda/tonic/phasic std Standard deviation for the raw, tonic, phasic data
eda/tonic/phasic n p Number of peaks for the raw, tonic, phasic data
eda/tonic/phasic a p Mean of peak amplitude for the raw, tonic, phasic data
eda/tonic/phasic auc Area under the curve of the raw, tonic, phasic data
num arouse Number of arousing moments during the class
ratio arouse Ratio of arousing and unarousing moments
levelk Ratio of the number of levelk and the length of Sk

eda/tonic/phasic pcct Pearson correlation coefficient with teacher
eda/tonic/phasic pccs* Pearson correlation coefficient with average value of students
eda/tonic/phasic dtwt Dynamic time wraping distance with teacher
eda/tonic/phasic dtws* Dynamic time wraping distance with average value of students

PPG

hrv bpm Average beats per minutes
hrv meani Overall mean of RR intervals (Meani)
hrv sdnn Standard deviation of intervals (SDNN)
hrv lf power Absolute power of the low-frequency band (0.04–0.15 Hz)
hrv hf power Absolute power of the high-frequency band (0.15–0.4 Hz)
hrv ratio lf hf Ratio of LF-to-HF power
hrv rmssd Root mean square of successive RR interval differences
hrv sdsd Standard deviation of successive RR interval differences
hrv pnn50 Percentage of successive interval pairs that differ >50 ms
hrv pnn20 Percentage of successive interval pairs that differ >20 ms

ACC

acc avg Average physical activity intensity during the class
acc std Standard deviation of physical activity intensity in class
acc dtw t Dynamic time wraping distance with teacher
acc dtw s* Dynamic time wraping distance with average value of students
acc pcc t Pearson correlation coefficient with teacher
acc pcc s* Pearson correlation coefficient with average value of students

ST sktemp avg/max/min Average/maximum/minimum value of skin temperature

CO2 mean/max/min co2 Average/maximum/minimum value of CO2
TEMP mean/max/min temp Average/maximum/minimum value of indoor temperature
HUMID mean/max/min co2 Average/maximum/minimum value of humidity
SOUND mean/max/min temp Average/maximum/minimum value of sound

3.5.1 EDA-based Features

EDA is a common measure of autonomic nervous system activity, with a long history being

used in psychological research [130]. Recently, EDA measurements have been increasingly

explored in affective computing such as the detection of emotion [47, 105], depression [48] ,

and engagement [6, 106, 107]. From EDA data, we extract statistical features such as the
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standard deviation from EDA (mixed, tonic, phasic) data, which reflects the overall general

arousal during the class [6]. As suggested in [6], we extract the number of arousing/arousing

states, the ratio of arousing states, etc. to show the momentary engagement during the class.

The similarity-based method such as Pearson Correlation Coefficient (PCC) [131] and Dynamic

Time Wrapping Distance (DTW) [132] are used to evaluate the physiological synchrony [76] of

the target student and teacher. Inspired by [111], we also propose some new features (marked

with *) to compute physiological synchrony between the target student and the average values

of other students, which has proven to be effective in Table 3.5.

3.5.2 HRV-based Features

HRV is controlled by the autonomic nervous system (ANS), which can be used to evaluate

human emotional arousal and cognitive performance [133, 134, 135, 136, 137]. With the help

of HeartPy [138] toolkit, we compute HRV features from IBI signals extracted from the raw

PPG data. As suggested in [139, 140, 141], HRV features can be analyzed from time-domain

and frequency domain. On the time-domain, we capture features such as the mean/standard

deviation of RR intervals (Meani, SDNN) which estimates the overall HRV. We also extract

features such as standard deviation/root mean square of successive RR interval differences

(SDSD, RMSSD), number/percentage of successive interval pairs that differ larger than 20/50

ms (NN20, NN50, pNN20, pNN50), which describes the momentary change of HRV. On the

frequency-domain where parameters are computed by applying Fast Fourier Transform (FFT)

to the time series of RR intervals [141], we compute the absolute power of the low-frequency

band (0.04-0.15 Hz) and high-frequency band (0.15-0.4 Hz). Besides, we compute the ratio of

LF-to-HF power which reflects the overall balance of the ANS [142].

3.5.3 Accelerometer-based Features

Student behaviour can be inferred from ACC data, which helps us know more about student

participation (e.g., team activities) and engagement level in class [111]. For ACC data, we

extract features such as the average physical activity and standard deviation, which describes

the statistical characteristics of the student movement during the class. Inspired by [111], we
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propose the movement synchrony features such as the DTW/PCC between the target student

and the average values of the other students.

3.5.4 Other Features

Student learning engagement has been found to be affected by the thermal comfort level of

students in the classrooms [122], and thermal comfort is influenced by many factors such

as indoor temperature, humidity, skin temperature, sound, CO2 level, etc [143, 121, 14, 15].

Therefore, statistical features are calculated for indoor temperature, CO2, sound and humidity,

as the overall estimate of the indoor environment during a class. For ST data, statistical

features are extracted to estimate the general arousal of student engagement. According to

[144], when CO2 level is higher than 1000 ppm, occupants may complain about the drowsiness

and poor air, and when CO2 level is higher than 2000 ppm, occupants will feel sleepy, headaches

and lose attention. Therefore, the above features are selected to study student engagement.

3.6 Prediction Pipeline

Although engagement prediction is usually regarded as a classification problem, where engage-

ment level can be divided into two or three categories [6, 45] based on specific thresholds, it

is not a good practice to determine people’s psychological characteristics using classification

[12]. In this research, we choose regression rather than classification for multidimensional en-

gagement prediction. In order to predict multidimensional engagement scores of students, we

set up a regression-based pipeline as described below.

Engagement Score: We assign each student a score for each item in the self-report survey.

To achieve this, we first reverse the responses in item 2 and item 4, as shown in Table 3.2.

Then, we calculated a score based on the average of the 5-point Likert scale for each dimension

of engagement and the overall engagement. Then we rescale the calculated score to 1 to 5,

representing the engagement level being low to high. Figure 3.4 shows the calculated overall

engagement score for 23 student participants. To save space, we do not display box plots of

the distribution of the single-dimensional engagement score.
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Regressors: We adopt LightGBM Regressor [145, 146] to predict self-reported multidi-

mensional engagement scores. As one of the most powerful prediction models, LightGBM is

an ensemble method combining a set of weak predictors (i.e., regression trees) to make ac-

curate and reliable predictions. It builds the regression tree vertically (leaf-wise) while other

algorithms grow trees horizontally (level-wise). It will choose the leaf with max delta loss to

grow. When growing the same leaves, LightGBM algorithm can reduce more loss than other

tree-based algorithms such as GBRT [147].

Validation: It is natural to use cross-validation to train and test prediction models when

we are not in a data-rich situation. The purpose of cross-validation is to estimate the unbiased

generalization performance of the prediction model. However, when using the test set for

both model selection (hyperparameter tuning) and model estimation, the test data may be

overfitted, and the optimistic bias may occur in the model estimation. Therefore, we adopt

the nested cross-validation approach [148] with inner loop cross-validation nested in outer loop

cross-validation. The inner loop is used for hyperparameter tuning and feature selection, while

the outer loop is responsible for evaluating the performance on the test set. In the outer

loop, similar to the previous human-centred research [6, 106], we first divide the data into n

groups, where n represents the number of participants, i.e., n = 23. Each group contains the

data for only one participant. Then we apply k-fold cross-validation [149] (k = 5) and on

all student groups. Specifically, data from the same student (group) will not appear in the

training and test sets at the same time. In the inner loop, the remaining data groups are

split into L (L = 3) folds, where each fold serves as a validation set in turn. Then we train

(grid search) the hyperparameters on the training set, evaluate them on the validation set, and

select the best parameter settings based on the performance recordings over L folds. We use

the importance vector generated from LightGBM to reduce the feature dimensionality, which

calculates feature importance automatically by averaging the number of times a specific feature

used for splitting a branch. Higher values indicate higher feature importance. Top-10 features

are selected as the new input features to the LightGBM regressor. The heuristic of choosing 10

features is we find that the prediction error is lowest under this threshold in the experiment.

Similar to [6, 120], we also perform leave-one-subject-out (LOSO) [150] validation to eval-
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uate the impact of data from individual participant on the overall prediction error. For both

k-fold and LOSO validation approaches, we calculate the average performance score (i.e., MAE

and RMSE) of the regressor in each iteration.

Baselines and Metrics: We compare the proposed engagement prediction model with

three baselines. The first baseline is the standard linear regressor [151], one of the most widely

used regression models. The second baseline takes the average score of each dimension of

engagement. The third baseline randomly generates a sample from the distribution of engage-

ment scores and regards it as a predicted value. Similar random baselines have been widely

used in previous ubiquitous computing studies such as [120, 6]. To evaluate the prediction

performance of the proposed model, we use the Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE) [152] metrics.

3.7 Results and Discussion

In this section, we conduct extensive experiments to evaluate the prediction performance of

n-Gage. We answer the first question ‘Can we measure the multiple dimensions of high school

student’s learning engagement including emotional, behavioural and cognitive engagement in

high schools with sensing data in the wild? ’ in Section 3.7.1. We answer the second question

‘Can we derive the activity, physiological, and environmental factors contributing to the dif-

ferent dimensions of student learning engagement? If yes, which sensors are the most useful

in differentiating each dimension of the engagement? ’ in Section 3.7.2. We also study how

different settings can help improve the performance of n-Gage. Unless otherwise stated, the

prediction models are built with LightGBM regressors using all sensors and evaluated by k-fold

nested cross-validation by default.

3.7.1 Overall Prediction Results

We first evaluate the overall prediction results for n-Gage with all sensors available. Table 3.4

displays MAE and RMSE scores of n-Gage’s engagement regression in different dimensions. In

particular, the overall engagement is calculated by the average of engagement scores from all
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Table 3.4: Prediction performance for emotional, cognitive, behavioural, and overall engage-
ment with all sensing data

Dimension
MAE RMSE

LGBM. LR. Average Random LGBM. LR. Average Random

Emotional 0.675 0.714 0.747 1.059 0.851 0.878 0.928 1.326
Cognitive 0.906 0.921 0.977 1.288 1.113 1.128 1.176 1.658
Behavioural 0.783 0.811 0.871 1.235 0.960 0.980 1.135 1.540
Overall 0.602 0.614 0.641 0.891 0.753 0.769 0.792 1.125

questions related to the engagement, which is commonly used in previous engagement studies

[45, 6, 91]. From Table 3.4, we can see that in terms of MAE and RMSE, n-Gage achieves higher

prediction performance for all dimensions of engagement than all baselines, demonstrating its

potential for multidimensional engagement prediction.

Notably, among each dimension of engagement, n-Gage works best on predicting emotional

engagement. The emotional engagement regression model obtain 0.675 of MAE and 0.851 of

RMSE, which is lower than 0.384 (36.26%) and 0.475 (35.82%) of the random baseline. The

reasons why n-Gage predicts emotional engagement best are possibly two-fold: (1) compared

with cognitive and behavioural engagement, emotional engagement is most suitable for evalua-

tion through self-report surveys [91], resulting in a more realistic and stable student emotional

engagement measurement (ground truth). (2) emotional engagement is more easily detected by

sensors (e.g., EDA and PPG) as it reflects the degree of emotional arousal, thereby producing

fluctuations in physiological signals [6, 29, 47].

Although the MAE of cognitive engagement regression is higher than other models, it is

still lower than random baseline of 0.382 (29.66%) in MAE and 0.545 (32.87%) in RMSE. The

possible reason is that cognitive engagement is more challenging to be assessed by the wearable

and indoor sensors than electroencephalography (EEG) sensors [153]. By contrast, n-Gage has

the lowest prediction error of 0.602 in MAE and 0.753 in RMSE in overall engagement assess-

ment. According to the education research [91, 92], although the multidimensional concept

of engagement has been well accepted, the definitions of three dimensions of engagement vary

with considerable overlap across components. Therefore, the overall engagement is easier to

be evaluated and predicted than the single-dimensional engagement.
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Figure 3.4: Boxplot of the overall engagement scores for 23 student participants. The red
dashed line represents the average score for all participants. The participant ID shown in the
figure is randomly generated to maintain the privacy of participants
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Figure 3.5: Prediction error for overall engagement scores for 23 student participants

We also compare the prediction results with when a standard linear regressor is learned.

From Table 3.4, the linear regression model has much higher prediction performance than

both average and random baseline models (e.g., 31.09% lower than random baseline model in

MAE for overall engagement prediction), indicating the effectiveness of extracted features in

engagement prediction. However, the performance of linear regressors is not comparable to

the LightGBM in all dimensions. This is because LightGBM has a good ability to capture

non-linear feature-target relationships which is more flexible than simple linear regressors. To

summarize, we believe that the performance of n-Gage is benefited from both the extracted

features and powerful non-linear mapping provided by the LightGBM.
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Table 3.5: The most influential features on multidimensional engagement

Engagement Association Most influential features

Emotional Engagement
(+) acc pcc s, tonic a p, eda pcc s
(-) acc avg*, sktemp avg*, eda dtw t

Cognitive Engagement
(+) intemp min*, level 1, hrv ratio lf hf
(-) acc pcc s*, co2 max, acc std

Behavioural Engagement
(+) acc std, acc pcc s, eda pcc avg
(-) sktemp avg*, acc pcc t*, acc dtw t

Overall Engagement
(+) level 1, tonic a p, intemp max
(-) acc dtw t*, sktemp avg, acc avg

* indicates p-value ≤ 0.01.

We then discuss the impact of data from the individual participant on the overall prediction

error. We train and test the regressors using the LOSO validation approach which enables

us to evaluate the ability of models to accurately predict a new participant not included in

the training set. Figure 3.5 shows the boxplot of absolute prediction error per participant.

Interestingly, each participant has a very different error distribution. For instance, participants

8 and 16 have the highest median value (1.492 and 1.082) and standard deviation (0.801

and 1.132) of prediction errors. From Figure 3.4, we observe that both participants have a

much lower engagement level than the others. Since the regression model is built on the data

from all the other participants, it does not work well when the participant (testing set) has a

different distribution from the training set. The potential solution is to build participant-wise

or groupwise prediction models, as introduced in [154]. In conclusion, we believe the prediction

errors come from both the specific participants and overall prediction bias. We will further

investigate this issue in future research.

3.7.2 Impact of Sensor Combinations

We will explore the physiological, activity and environmental factors contributing to the dif-

ferent dimensions of student engagement. We compute the Pearson Correlation Coefficient

(PCC) between the extracted features and multiple dimensions of engagement, and then list

the three most influential features in Table 3.5. We find many EDA features related to the
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peaks of tonic EDA signals and physiological synchrony are related to the multidimensional

engagement. In previous research, EDA features are generally considered as a good indicator of

physiological arousal (e.g., emotional and cognitive states) [103, 104], which have been explored

in the detection of engagement [6, 106, 107]. For the HRV features (e.g., ‘hrv ratio lf hf’), they

are shown to be correlated with cognitive engagement as HRV is an autonomically dependent

variable and has been used to predict student engagement in [109]. Similar to EDA and HRV

features, we notice that the average skin temperature (‘sktemp avg’) are negatively correlated

with engagement, as ST reflects the sympathetic nervous activity and attention states [155]

which has been used for mind-wandering prediction [156] and stress detection [157].

For activity factors, it is interesting to find that many ACC features are highly correlated

with engagement. The accelerometer is a popular and powerful sensor for quantifying human

behavioural patterns [31, 12]. ACC features have been utilised to sense audience engagement

using interpersonal movement synchrony [111]. In the experiment, we observe that the average

physical intensity during class is highly negatively correlated with emotional engagement. This

leads us to believe that when students are negatively engaged, they tend to perform more phys-

ical movements in the class. As for environmental factors, we find that the maximal CO2 level

is negatively associated with cognitive engagement, while the indoor temperature is positively

associated with engagement. This may be because CO2 has a negative impact on people’s

cognitive load [123, 124], and then affects student cognitive engagement. This result highlights

the need to ventilate the classroom timely to keep students engaged. Interestingly, we notice

that the maximal indoor temperature in the class is positively correlated with overall engage-

ment. One possible explanation is that during the data collection period (winter and spring),

the indoor temperature is low and moderately higher indoor temperature makes students feel

thermally comfortable [121] and therefore more engaged in learning [122].

Then we investigate the most useful sensors in predicting each dimension of student en-

gagement and explore the performance of n-Gage when only a set of sensors available. In

this chapter, we use E4 wristbands and Netatmo indoor weather stations for student engage-

ment assessment. However, when other schools want to generalize the system for automatic

engagement measurement, it is likely that only a few sensors available considering the types



Results and Discussion 57

Table 3.6: Summary of the Prediction performance of multidimensional engagement using
different sensor combinations. X1 indicates all the wearable data including EDA, HRV, ACC
and ST data, and X2 means the indoor environmental data including CO2 and temperature
data

Data source
MAE/RMSE

Emotional Cognitive Behavioural Overall

EDA 0.697/0.877 0.948/1.149 0.851/1.019 0.637/0.800
HRV 0.714/0.901 0.940/1.140 0.833/1.002 0.659/0.812

EDA+HRV 0.699/0.875 0.949/1.151 0.841/0.989 0.621/0.783
EDA+ACC 0.679/0.860 0.914/1.124 0.816/0.987 0.626/0.789
HRV+ACC 0.691/0.875 0.910/1.125 0.809/0.979 0.641/0.796

EDA+HRV+ACC 0.679/0.860 0.909/1.122 0.800/0.965 0.620/0.778
X1* 0.673/0.851 0.910/1.126 0.811/0.980 0.619/0.775

X1+ X2* (all) 0.675/0.851 0.906/1.113 0.783/0.960 0.602/0.753

* indicates the proposed combination of features for engagement prediction.

of wearables and installation of indoor weather stations. In this experiment, we use different

combinations of sensors as shown in Table 3.6 to train the regressors, where X1 indicates all the

wearable sensors including EDA, HRV, ACC and ST, and X2 represents all the environmental

sensors containing CO2, TEMP, HUMID and SOUND sensors. Besides, we predict student

engagement using only EDA as in [6], single PPG (HRV) as in [62], and EDA+HRV as in [45].

Since accelerometers are naturally available in wearables and have been used for engagement

measurement [111], we add ACC to the above sensor combinations for the first time. Then we

utilise all wearable sensors and indoor sensors for more accurate engagement prediction.

For each sensor combination, we use nested cross-validation to train and test the regressors

as described in Section 3.6, to achieve optimal feature selection and parameter tuning. Table 3.6

displays the regression result with different sensor combinations. Different combinations are

useful for different dimensions of engagement. For instance, a single EDA sensor works well for

emotional engagement prediction while less useful in predicting behavioural engagement unless

involving ACC together. This is reasonable because EDA is a reflection of emotional arousal,

while ACC is capable of quantifying human behavioural patterns [31, 12]. On the other hand,

the combination of EDA and HRV sensors has similar prediction performance compared to

using a single EDA sensor, which is consistent with the fact that not many HRV features are
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Table 3.7: Multidimensional engagement regression result for different subjects

Subject
MAE/RMSE

Emotional Cognitive Behavioural Overall

Maths 0.686/0.841 0.841/0.965 0.750/0.891 0.603/0.738
English 0.609/0.779 0.893/1.010 0.694/0.819 0.510/0.629
Language 0.645/0.814 0.829/0.903 0.799/0.900 0.593/0.758
Science 0.646/0.829 0.895/0.941 0.758/0.856 0.575/0.720
Politics 0.674/0.835 0.947/1.057 0.660/0.731 0.525/0.671

Average 0.652/0.820 0.881/0.975 0.732/0.839 0.561/0.703

highly correlated with engagement. When there is no EDA sensor (especially in commercial

off-the-shelf smart wristbands), the HRV+ACC combination can achieve similar prediction

performance on cognitive and behavioural engagement compared to EDA+HRV+ACC.

Meanwhile, it can be observed that the combination of all wearable sensors (X1) has the

lowest prediction error for emotional engagement. When considering wearable sensors (X1) with

indoor sensors (X2), n-Gage can achieve the best performance on the behavioural, cognitive

and overall engagement, and has similar prediction performance in emotional engagement

with X1. The underlying reason is that CO2 and indoor temperature mainly affect students’

cognition load and behavioural patterns. For example, students may lose attention (related

to behavioural engagement), sleepy (related to cognitive engagement) [144] during class when

the CO2 level is too high (e.g., larger than 2000 ppm), but this does not necessarily mean that

students do not like the class (related to emotional engagement). The above results illustrate

the importance of taking indoor environmental changes into account for student engagement

prediction and creating the optimal environment to keep students engaged in class.

3.7.3 Impact of Class Subjects

Now, we investigate whether considering different school subjects could improve the prediction

performance of n-Gage. Our assumption here is that different subjects may lead to different

learning requirements, thinking styles and emotional preferences. Then, student engagement

levels and physiological status may be affected accordingly.

To validate this hypothesis, we establish regression models for each subject (i.e., Language,
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Figure 3.6: Prediction performance for the average subject model and general model
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Figure 3.7: Engagement scores on different subjects

Maths, Science, English, PE, Politics, Health, Chapel) to isolate differences in class subjects

and engagement assessment. Table 3.7 summarizes MAE and RMSE scores of the regressors

over different subjects. We do not consider the Health, Chapel and PE classes because the

number of survey responses are limited (less than 30) in those classes which may affect the

prediction performance. We also compare the average prediction performance of 5 regression

models (i.e., Maths, English, Language, Science, Politics) with the general regressor model in

Figure 3.6. The results indicate that, compared with building the general regression model

including all subjects, building regression models by school subjects can significantly improve

the prediction performance.

To better understand the underlying cause behind the improved regression performance, we

review the self-reported engagement scores. Figure 3.7 shows that students have very different
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multidimensional engagement scores among different subjects. For instance, while students

have the highest behavioural and emotional engagement score in English class, they have the

highest cognitive engagement score in Maths class. The possible reason is that students enjoy

English classes most and thus like to follow the rules from English teachers. Due to the fact that

Math know-how is cumulative and usually contains complex concepts, students may put more

effort to comprehend the contents in Maths class, thus leading to a high cognition engagement

score. Overall, these observations serve as evidence that building models for each subject can

lead to significantly improved prediction performance.

3.7.4 Discussion

We have shown that it is possible to infer multidimensional student engagement by using mul-

tiple wearable and environmental sensors. Meantime, we will present the following interesting

discussion points.

• Engagement and class time. A preliminary study is conducted to investigate the cor-

relation between self-reported student engagement and class time during the school day.

Figure 3.8a shows the average engagement scores for the different class time (morning,

noon and afternoon). Overall, we observe that classes in the noon show higher engage-

ment levels in all dimensions. Classes in the afternoon (after lunch) have the lowest

engagement score, especially in the behavioural and emotional dimensions. Particularly,

it is interesting to notice that students have a much higher behavioural and emotional

engagement level than the cognition level despite the time of the classes. These obser-

vations provide directions for further research in maximizing student engagement by a

more reasonable arrangement of class schedule according to the nature of each course.

• Engagement and thermal comfort. In the background survey, most students agree

that ‘When I am engaged in class, I could get distracted when the room is too hot or too

cold ’ (see Section 3.3.2.2). As another investigative point, Figure 3.8b shows the relation-

ship between self-reported engagement and thermal preference (i.e., warmer, cooler, no

change) [143] of the students in class. The results show that students who feel the room
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Figure 3.8: Engagement scores with different class time and thermal comfort

thermally comfortable have a higher overall engagement level compared to other groups.

In particular, students who prefer a cooler environment usually have the lowest cognition

engagement. This reminds us that creating the thermally comfortable environment is

necessary to improve student engagement in class, especially considering the individual

differences in thermal sensation [158].

• Real-time measurement. Students’ engagement level during a class may vary with

the learning content and teaching style. Real-time anonymous engagement tracking can

provide teachers with student engagement level and help teachers understand the impact

of different teaching contents on student engagement, thereby better adjusting teaching

speed and teaching methods. However, the challenge is how to obtain the fine-grained

ground truth of student engagement multiple times during the class without disturbing

students’ studying. One potential approach is ecological momentary assessment (EMA)

[29] which repeatedly prompts students to report their engagement level. Though EMA

is usually considered a good method of in situ data collection, students may be disturbed

and distracted in class if they are required to complete the EMA. Overall, ground truth

data collection is challenging and more reliable methods need to be investigated.
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3.8 Implications and Limitations

This chapter addresses the possibility of automatically predicting students’ in-class emotional,

behavioural and cognitive engagement using wearable and indoor sensing technology, which

provides opportunities for the future design of feedback systems in the classroom. The feedback

system has the potential to benefit both teachers and students.

Teachers play an important role in influencing student engagement [91]. With the feed-

back from students after each class, teachers can evaluate, and, if necessary, adapt or change

teaching strategies (e.g., increase time for student thinking, allow students time to write, as-

sign reporters for small groups [159]) for creating the right learning climate to keep students

engaged [160]. For instance, when teachers focus more on academics and fail to create a

positive social learning environment, students are likely to be emotionally disengaged and wor-

ried about making mistakes. Contrarily, when teachers focus more on the social dimension

and neglect the intellectual dimension, students possibly experience low cognitive engagement

for learning [161, 91]. With such a feedback system, teachers can observe multidimensional

student engagement and create the intellectually challenging and socially supportive learning

environment.

Further, if this system is deployed, using n-Gage, teachers can take timely measures to

improve learning experience for students, such as planning learning schedules, re-engaging

students with the low engagement, and ventilating the room to let the fresh air in. While

overcoming student disengagement is complicated, we do believe teachers can benefit from

the engagement feedback of students after every class instead of few times in a term [162, 6],

contributing to higher student achievements and protecting students from dropping out of

school [91].

Students wearing wristbands are able to self-track their multidimensional in-class engage-

ment, which positively influences academic achievements and is usually regarded as the pre-

dictor of learning outcomes [163, 94, 91]. Being conscious of in-class engagement is an effective

quantified-self [164, 165] approach to promote self-regulation and reflective learning [166] for

students. Once students are aware of how much effort they are putting into learning, they can

work towards their personal goals by optimizing their study practices and learning strategies
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(e.g., practice active listening and thinking, make study plans for different subjects) [165, 167].

Additional strategies such as gamification [168, 169] can also be deployed along with n-Gage

measurements.

For real-world deployments, the feedback system can still work when only a subset of

sensors available (see Section 3.7). For instance, when there are no indoor sensors installed,

wearable sensors can be used for accurate engagement prediction especially for the emotional

engagement. The system can also allow more sensors to be integrated in the future when

becomes available.

The current studies have some limitations that needed to be addressed in future research.

Firstly, collecting data from more student participants in the same class may bring new op-

portunities for data analysis. There are 59 Year 10 students in total, but only 23 students

voluntarily became participants and wore wristbands. Compared to students who did not par-

ticipate, participants may share some similar personality traits and have higher potential to

engage in class most of the time.

Secondly, we agree that collecting the ground truth of student engagement is challenging

because we need to find a compromise between taking long psychological surveys for more

accurate measurement and enabling students to complete surveys faster without affecting their

study or rest. Therefore, a more robust way of evaluating multidimensional student engagement

needs to be investigated in the future.

Thirdly, the quality of survey responses varies. Online surveys are conducted three times a

day, and the total response rate is 35.3%. Since completing surveys multiple times a day may

become a burden, students are likely to answer the questions unseriously. Therefore, in this

study, we only encourage rather than urge them to complete the survey, which to a certain

extent guarantees the quality of responses. Figure 3.9 shows the survey completion time for all

responses from participants. Most participants complete the survey in 30 to 50 seconds, but

some participants complete the survey in less than 15 seconds. Though the survey completion

time may be affected by many factors and varies from person to person, it is still one of the

indicators of response quality [73]. In future research, it will be interesting to explore patterns

from survey completion time data and assign appropriate weights to survey response for more
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Figure 3.9: Survey completion time for different participants. Each point represents the survey
completion time for one response

accurate prediction of student engagement.

During the in-situ data collection, the data recorded by the wristband is not always contin-

uous. For many reasons, we face a considerable loss of data: (1) on each school day, an average

of 2 to 4 participants are on sick leave and cannot wear wristbands; (2) 6 participants went

abroad to a study program on the second week of data collection; (3) students were curious

about the wristbands, especially in the first few days, and they pressed the button again and

again out of curiosity. Some students accidentally closed their wristbands, so their data was

lost for hours or even the whole day.

Though significant efforts have been made to make the maximal use of the collected data,

32.17% traces must to be removed from the analysis due to the loss of survey data, the incom-

plete data during the class, the presence of long-time of flat responses, artifacts and quantiza-

tion errors as discussed in Section 3.4. Despite the fact that we have cleaned and pre-processed

wearable data to eliminate noises, collecting physiological data in the wild still faces huge chal-

lenges, especially for young students. In our research, one of the main noise is from the poor

contact between the sensors and skin, which can be fixed by tightening the wrist strap to the

skin. However, this will also increase awareness of wristband during class, resulting in student

in-class disengagement and even more motion artifacts.



Conclusion 65

3.9 Conclusion

In this chapter, we proposed n-Gage, an engagement sensing system that can capture students’

physiological responses, physical movements, and environmental changes to infer multidimen-

sional engagement (behavioural, emotional and cognitive engagement) level in class. We eval-

uated the system by combining weather station data and wearable data collected from 23 Year

10 students and 6 teachers over 144 classes in 4 weeks in a high school. Some new features

were proposed to characterize different aspects of student engagement. Extensive experiment

results showed that n-Gage can predict student behavioural, emotional and cognitive engage-

ment score (1 is the lowest score and 5 is the highest score) with an average MAE of 0.788

and RMSE of 0.975. We further demonstrated the most influential features and how differ-

ent sensor combinations/school subjects affect student engagement. Finally, we have shown

some interesting findings that the maximal CO2 level is highly negatively correlated with stu-

dent cognitive engagement; class time (morning, noon and afternoon) and thermal preference

(warmer, cooler or no change) may affect the level of student engagement, which provides

beneficial insights for educators and school managers to improve student learning engagement

in high school. Though not perfect, n-Gage is still a very promising first-step towards multidi-

mensional in-class engagement tracking for students. As a contribution, n-Gage can indicate

the future design of feedback systems, assisting students and teachers in a variety of ways such

as promoting students’ self-regulation and reflective learning, helping teachers create a right

learning climate for students.



Chapter 4

Understanding Classroom Seating

Behaviours from Perceived and

Physiologically Measured Student

Engagement

In Chapter 3, we show that student engagement can be inferred from their physiological sensing

signals. Some popular features are extracted to represent physiological arousal and synchrony

between students. In relation to RQ-3, this chapter explores how individual and group-wise

classroom seating experiences affect student engagement by using data gathered from wearable

physiological sensors. Using the dataset collected in Chapter 2, we will show that the individual

and group-wise classroom seating experience is associated with perceived student engagement

and physiologically measured engagement, as measured by EDA. We will show that students

who sit close together are more likely to have similar learning engagement and tend to have

high physiological synchrony.

66
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4.1 Introduction

Anecdotal evidence has suggested that student seating experience has played an important

role in affecting student engagement, participation, attention and academic performance in

classrooms [170, 171]. Different seating locations provide different degrees of access to learning

conditions and resources (e.g. the ability to see and hear the teacher [172]), which impacts

students’ physical and mental comfort, and their concentration in class [170]. For example, a

spacious seat offers physical comfort, a seat near the door results in many distractions, and a

seat close to the teacher can result in more attention from the teacher [170, 173]. In addition,

peers have an impact on student engagement, most especially a negative impact, as peers may

invoke more non-academic interactions and off-task behaviours [170, 174]. However, peers can

also have a positive impact by encouraging active learning throught discussion [170, 175]. In

general, all behaviours or influences related to the seating experience affect student engage-

ment in class, an essential psychological representation. Student engagement refers to the

degree of student involvement or interest in learning, as well as their degree of connection with

the class or each other [176]. The study of student engagement has attracted growing interest

to address problems, such as high dropout rates and declining motivation and achievement

[91, 92]. Specifically, Fredricks et al. [91] identified three dimensions to student engagement:

emotional engagement (i.e. interest, enjoyment and enthusiasm [177, 92]), cognitive engage-

ment (i.e. concentration and comprehension [99, 92]) and behavioural engagement (i.e. effort

and determination [96, 91, 6]).

There is a large body of research investigating the impact of seating location on student

engagement and classroom experience [178, 174, 179, 180]. Shrenoff et al. [178] conducted a

study in a large university lecture hall and found that students who sit in the back report the

lowest perceived engagement, and students who sit in the front report the highest engagement.

Joshi et al. [174] analyzed the influence of multimedia and seating location on academic

engagement, and indicated that students who sit close to the multimedia screen pay more

attention than students in the middle row. Both Holliman et al. [180] and Becker et al. [179]

found that student performance declined as teacher-to-student seating distance increased.

However, one common limitation of previous studies is that they relied on the self-report



Introduction 68

survey or EMA [181] as an engagement measurement, which may prone to subjectivity and

various response biases (e.g. social desirability and extreme rating bias) [40]. By investigating

the accuracy of self-report information, Moller et al. [59] pointed out that the self reports

should not be trusted blindly and researchers must take into consideration that the responses

can be unreliable. To overcome this limitation, sensing physiological signals (e.g. electrodermal

activity) could be an alternative or even a better method for understanding the relationship

between seating location and student engagement. Electrodermal activity, also known as Gal-

vanic Skin Response (GSR), has been used in physiological and psychophysiological research

since the 1880s [104]. It refers to changes in the electrical conductance of the skin in response

to sweat secretion, which is controlled by the Sympathetic Nervous System (SNS) [182]. The

primary process of the SNS is to stimulate the body’s fight or flight responses [183]. When

the sympathetic nervous system is highly aroused, the activity of the sweat glands increases,

which in turn increases skin conductance [184].

In this way, EDA is widely used to measure arousal in psychology, which is a broad term

representing overall activation and is recognised as one of the two dimensions (i.e. arousal

and valence) of emotion responses [185]. Although measuring arousal is not exactly the same

as measuring emotion, it is an important component of emotion, and it has been found to

be a strong predictor of attention, perception and cognitive processing [186, 187]. Previous

research has shown that EDA is associated with some psychological constructs, such as arousal,

stress and cognition load [188]. As an indirect method for measuring arousal and increased

mental workload, EDA has been adopted to evaluate engagement in various domains [28, 6,

30, 45, 106, 111]. However, most researchers studied engagement on the individual level using

either behavioural or physiological patterns. To our knowledge, no prior research has explored

student engagement at the group level or investigated distinct clusters of physiological signals

from students which share similar engagement levels.

On the other hand, in order to facilitate the statistics of the spatial data (seating locations)

in questionnaires, most research focused on the general locations (e.g. front, middle, back)

in traditional seating arrangement types (e.g. grouped tables or rows-and-columns) rather

than the exact seating locations in flexible seating arrangements scenarios [189, 180, 178, 174].
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Furthermore, while some research has been carried out on individual seating experiences, only a

few studies have investigated the social aspects of these seating experiences. To deal with above

issues, in this research, we collect the accurate seating location of students with flexible seating

arrangements. In addition to investigating individual experiences, the seating experience and

engagement are also investigated in a group-wise manner, i.e. student peers and student groups.

Therefore, in this chapter, we aim to answer the following research questions: 1. How

does seating proximity between students relate to their perceived learning engagement? 2. How

do students’ group seating behaviours relate to their physiologically measured engagement level

(i.e. physiological arousal and synchrony)? This research contributes to empirical evidence

on how the classroom seating experience affects student engagement. In this study, seating

experience is defined as seating location (e.g. in the front or back of the classroom). We present

the results of an in-situ study in a high school in which we collected survey and wearable data

from 23 student participants attending 10 different courses over four weeks. We investigate

the relationship between the student seating experience and student engagement. The results

show that students who sit close together are more likely to have similar engagement levels

than those who sit far apart. In summary, the contributions of this research are as follows:

• We investigate how student seating experience affects student engagement by understand-

ing their perceived engagement and physiologically measured engagement, measured by

EDA signals. A field study was conducted on a high school campus, with 23 student

participants attending 10 courses over hundreds of classes. During the four-week data

collection, each participant was asked to wear the E4 wristband during school and report

their learning engagement and seating location in the classroom.

• To the best of our knowledge, we are the first to study how individual and group-wise

classroom seating experiences relate to student engagement. We analyse student engage-

ment from two different perspectives: perceived engagement and physiologically measured

engagement.

• For the first time, we identify statistically significant correlations between student seat-

ing behaviours and students’ perceived and physiologically measured engagement. Our
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results show that students who sit close together are more likely to have similar learning

engagement and physiological synchrony than students who sit far apart.

4.2 Related Work

This section describes related works on student engagement and the classroom seating expe-

rience in educational settings. A brief summary of the main related works can be found in

Table 4.1.

4.2.1 Student Engagement in Educational Research

The concept of student engagement has a history from ten to seventy years [176]. In the 1930s,

the educational psychologist Ralph Tyler began to exploring the time students spent at work

and its impact on learning. Harper et al. [190] argued that engagement is more than participa-

tion or involvement; it requires feelings, sense-making as well as activities. In 2004, drawing on

Bloom’s research [191], Fredricks et al. [91] identified three dimensions of student engagement:

(1) emotional engagement. Students who are emotionally engaged would experience affective

reactions, such as interest, enjoyment or a sense of belonging [177, 92]; (2) behavioural engage-

ment. Behaviourally engaged students usually abide by behavioural norms, such as attendance

and participation, and exhibit an absence of destructive or negative behaviour [96, 91]; (3)

cognitive engagement. Students who engage cognitively would be invested in their learning,

show a willingness to go beyond the requirements and exert efforts to comprehend complex

ideas [99, 92].

Student engagement at a particular school or university is increasingly recognised as an

effective indicator of institutional excellence, rather than traditional characteristics (e.g. the

numbers of books in the library or number of Nobel laureates in the faculty). The self-report

survey is one of the most widely used tools for measuring student engagement, and some of

the most popular are the National Survey of Student Engagement (NSSE) [176], Engagement

vs. Disaffection with Learning (EvsD) [102], Motivated Strategies for Learning Questionnaire

(MSLQ) [100], and School Engagement Measure (SEM) [101]. Recently, some short question-
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naires (e.g. In-class Student Engagement Questionnaires (ISEQ) [62] ) have been designed for

Experience Sampling [192], which reduces the problem of recall failure and provides instant

feedback to inform a cycle of quality improvement.

4.2.2 Classroom Seating Experience and Student Engagement

4.2.2.1 Flexible Seating in the Classroom

Standard classrooms are set up in the traditional linear seating arrangement, with standard

desks and chairs facing the podium. However, pedagogical studies [170, 193, 194, 195, 174, 173]

have found that when compared with traditional seating, flexible seating provides a more

comfortable environment and has multiple benefits that improve educational activities. Flexible

seating uses various seating options [173] (e.g. balls or cushions and standing or seating options)

or non-linear seating arrangements (e.g. u-shaped or semicirclular) [170, 174]. Yang et al.

[196] found that in English learning courses, the semicircular arrangement facilitated student

engagement by enhancing communication, concentration and the classroom environment when

compared with the traditional arrangement. In addition, researchers [170, 197, 198] have

suggested that tailoring classroom seating arrangements to educational activities helps manage

students and results in better perceptions of student behaviours.

4.2.2.2 Seating Preference and Student Engagement

Most researchers concluded that seating location has an effect on student engagement, atten-

tion, involvement and motivation [194, 197, 171]. Ngware et al. [197] showed that students’

seating locations were related to their academic abilities. Sitting in the front row led to greater

learning gains (5%-27%) when compared with sitting far away from the front. Burda et al.

[171] indicated that students who choose the back seats may be more passive and feel more

comfortable sitting far away from the teacher to ensure less interaction. These students were of-

ten observed disengaging from the class. Gyanendra et al. [174] found that university students

who preferred to sit in the first or the last two rows of the classrooms paid greater attention

to the multimedia screen and had higher grades than those who sat in the middle.
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Table 4.1: Related works that studied student seating experience and learning engagement,
performance and emotion

Ref. Seating Options Seating Data Assessed Item Participants Data Type

[198] Rows-and-
columns, self-select

Accurate x, y
position in the
classroom

Academic performance,
engagement

182 university
students from 4
disciplines

Academic score

[174] Rows-and-
columns, self-select

Rows and
groups

Academic performance,
attention

25,000+ univer-
sity students

Attendance, aca-
demic score, head-
down activity, eye
activity

[178] Rows-and-
columns, self-
select, semi-
circular

Front, middle,
back of the
classroom

Class experience, en-
gagement, course per-
formance

407 university
students

self-reported en-
gagement, attention,
classroom experi-
ence, course grade

[199] N/A N/A Academic performance,
study satisfaction,
study usefulness

31 university
students (93
sessions)

Self-reported expe-
rience, HR, EDA,
TEMP, BVP

[7] N/A N/A Class experience, emo-
tion state

24 university
students (1008
sessions)

Self-reported experi-
ence and emotional
state, EDA

[6] N/A N/A Emotional engagement 24 university
students (984
sessions)

Self-reported emo-
tional engagement,
EDA, BVP

Kalinowski [200] compared academic scores with students’ seating preferences and assigned

seating locations. They found that students with higher GPAs preferred to sit in the front. This

suggests that a correlation between seating location and motivation. Ka et al. [198] examined

the relationship between the seating location and academic performance of 182 university

students from four disciplines. It highlighted a significant relationship between seating location

and academic performance. However, the relationship varied between the academic disciplines.

In particular, in fields requiring more active and integrated learning, such as nursing, students

who sat in the front performed batter academically than those who sat at the back becuase

of their higher level of participation and engagement. It is worth noting that the only the

academic scores were compared, which is not sufficient to represent academic performance or

engagement.
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4.2.2.3 Seating Proximity and Student Engagement

The proximity of the student to the teacher [201, 178] and student groups [202, 203] can affect

student engagement and satisfaction in the classroom. Millard et al. [201] found that when

undergraduates were periodically moved from one location to another, students’ enjoyment

and productivity changed significantly in both free and assigned seating settings. They also

found that increasing proximity of student and teacher was related to decreasing self-reported

motivation, enjoyment, interests and feeling apart. Shernoff et al. [178] suggested that seating

location and distance from the teacher are consistently correlated with student engagement,

attention and course performance. Although social interactions, such as group discussions,

positively impact engagement and encourage active learning [204], there is a risk that non-

academic interactions also increase, thereby distracting students. Teachers can assign seats

in an attempt to control student interactions, e.g. specifically assigning seats to reduce non-

academic peer interactions, which have a negative influence on academic achievement [170].

Gremmen et al. [203] investigated whether near-seated peers influence students’ academic

engagement and achievement in elementary school settings. They found that students achieved

better (worse) scores when near-seated friends scored better (worse).

Social learning theory states that people learn by observing and imitating others [175].

Based on this theory, students should learn by observing peers [175], and peer conditions affect

student engagement and motivation. Gyanendra et al. [174] indicated that students preferred

to choose seats with similar proximity to the multimedia screen, and the students who sat at

a similar proximity to the front had similar distraction rates and performance levels [174], e.g.

students with higher grades chose to sit in the front rows. These findings suggest a bidirectional

relationship, i.e. performance (or motivations) connects peers, and peer conditions impact

performance (or motivation). Although arguably, grades are correlated with seating location

[174, 197, 194, 198], it was empirically discovered that study performance and engagement

significantly improved when students sat closer [170, 28]. Netware et al. [197] also noted the

correlation between seat location and in-class engagement, and suggested that teachers could

optimise their teaching effectiveness by monitoring the progress of students sitting in different

rows.
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4.2.3 Inferring Student Engagement Using Sensing Technologies

Recently, physiological signals, e.g. EDA [30, 6, 118], PPG [109, 30], electroencephalogram

(EEG) [205], eye gaze [206] and facial expressions [207], have been used to infer learners’

affective states. Especially, there is a thread of research using EDA to indicate engagement

levels [28, 6, 30, 45, 106, 111]. Hernandez et al. [106] measured the engagement of the child

during interaction using physiological synchrony extracted from EDA sensors. Lascio et al.

[6] measured university students’ emotional engagement from EDA signals. Huynh et al. [45]

developed EngageMon to use EDA together with HRV, touch and vision to indicate game

engagement. Gao et al. [30] predicted student multi-dimensional engagement using EDA,

PPG and HRV signals.

Physiological synchrony indicates the observed association or interdependence between the

physiological processes of two or more people. These physiological signals often reflect con-

nections between people’s continuous measurements of the autonomic nervous system [76].

Across various streams of research, physiological synchrony has been shown to be informative

for cognitive demands, task difficulties, learning engagement, etc. Therefore, understanding

the physiological synchrony between people has attracted attention in the ubicomp community

[7, 111, 208, 209]. Gashi et al. [7] proposed using physiological synchrony between students

to measure the classroom emotional climate (CEC). They calculated the group physiological

synchrony by applying the Dynamic Time Warping (DTW) distance to processed EDA signals

and found that the group physiological synchrony of EDA was positively correlated to the CEC.

Gashi et al. [28] studied the physiological synchrony of the inter-beat interval (IBI) and EDA

signals between a presenter and the audience. They found that these signals could be used

as a proxy to quantify participants’ agreement on self-reported engagement during presenta-

tions. Malmberg et al. [208] found that physiological synchrony occurred within two groups of

students who experienced difficulties in collaborative exams and concluded that physiological

synchrony may be an indicator of the recognition of meaningful events in computer-supported

collaborative learning.

In summary, unlike previous studies, our research has the following advantages: (1) We

are the first to examine how student seating behaviour is related to physiologically measured
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student engagement rather than simply using traditional measures (i.e. perceived student

engagement) as previous studies have done [178, 174, 210, 199]. (2) We explore student seat-

ing behaviours using exact seating locations, which provides greater flexibility, whereas most

studies only explore traditional seating arrangement styles (e.g. grouped tables or traditional

row arrangement) [178, 174, 210]. (3) We explore the student engagement at the group level

by utilizing distinct clusters of physiological signals, while previous researchers have studied

student engagement at the individual level [6, 30]. (4) For the first time, we identify some sta-

tistically significant correlations between student seating behaviours and students’ perceived

and physiologically measured engagement.

4.3 Data Collection

We collected data from a field study in a high school over four weeks. Detailed information on

the dataset can be found in Chapter 2. For simplicity, in this chapter, we will not introduce

the data collection but only show the collected data that relates to this chapter, i.e. perceived

student engagement, student seating location and physiological signals in class.

4.3.1 Student Multi-dimensional Engagement

We used a self-report survey to collect subjective assessments of student engagement. The

self-report tool is the most commonly used method to measure student engagement because

it can clearly reflect subjective perceptions, while other methods, such as interviews, teacher

ratings and observations, are susceptible to external factors [91, 92]. The student engagement

questionnaire included five items from the validated ISEQ. In the questionnaire, each item was

rated on a 5-point Likert-scale from ’strongly disagree’ to ’strongly agree’.

4.3.2 Seating Location

Classrooms for students in Year 10 are approximately 7.0 m × 8.9 m in size and can accommo-

date up to 25 students. This school encourages flexible seating arrangements, therefore seating

arrangements will often vary based on teacher needs, teaching style and course content. For
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Figure 4.1: The screenshot of the self-report survey.

example, rows and columns are adopted when individual works are preferred, small groups are

organised when more interaction is encouraged, semi-circular or u-shape seating arrangements

are used when communication is emphasized. Before each class, students are free to choose

where they want to sit in the classroom, leaving multiple vacant seats as some students may

be absent for various reasons. During the data collection, the seating location of participants

was measured by the self-report item ‘Where did you sit in the last class? (Please click on

the floor plan)’. Participants were shown floor plan pictures 1 and they could click different

locations to report where they sat (see Figure 4.1). The seating location was recorded as the x

and y-coordinate (in pixels) for each click, where x = 0, y = 0 represented the upper left corner

of the floor plan. Compared to traditional methods of asking students about general locations

(e.g. back/middle/front of the room [178], districts of multiple rows [174]) or the sequential

number of rows and columns [197, 211], reporting the exact location in a classroom enables us

to understand seating behaviours in real-world scenarios with flexible seating arrangements.

Figure 4.2 shows the heat map of the seating locations from different classrooms in Year 10.

1All classrooms in Year 10 have the same floor plan.
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Room R1 (180 responses) Room R2 (77 responses) Room R3 (107 responses) Total (488 responses)

Figure 4.2: Overall seating distribution of students in the classrooms

4.3.3 Physiological Signals

We assess participants’ EDA signals using the Empatica E4 wristbands. The E4 wristband is

equipped with multiple sensors designed to gather high-quality data and has an EDA sensor,

PPG sensor, an ACC and an optical thermometer. EDA sensors record the constantly fluctu-

ating changes in the electrical properties of the skin at 4 Hz. When the level of sweat increases,

the conductivity of the skin increases. For most people, when they experience increased cogni-

tive workload, emotional arousal or physical exertion, the brain will send innervating signals to

the skin to increase the sweat production. Therefore, even though they may not feel any sweat

on the skin surface, conductivity increases noticeably. Specifically, EDA complex includes two

main components: a general tonic component to measure the skin conductance level (SCL)

and rapid phasic component to measure the skin conductance response (SCR) resulting from

sympathetic neuron activity [212]. The SCL measures the slow-acting and background char-

acteristics of the EDA signal (overall level and slow decline or increase over time), reflecting

the influence of autonomic arousal on the general sweat glands. The SCR is usually a sud-

den increase in the skin’s conductance, which is usually associated with short-term events and

external/internal stimuli.

4.4 Overview of Seating Experience, Student Engagement

and Physiological Patterns

In this section, we explore the patterns of seating experience, student engagement and physi-

ological signals. We divide the student groups based on seating locations and investigate the

seating preference of participants over different courses. Then, we display the distribution of
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Participant 1 Participant 15 Participant 23 Participant 22 Participant 9

Figure 4.3: Seating location across five different student participants

student engagement and the number of collected wearable signals across all courses.

4.4.1 Seating Locations and Seating Preference

Figure 4.3 displays the seating locations of five different students participants: P1, P15, P23,

P22 and P9. Due to space limitations, we have not shown the seating distribution of all par-

ticipants. We find that different participants tended to have very different seating preferences.

For instance, participant P22 typically sat close to the whiteboard, while participant P9 tended

to sit at the back of the classroom. To better investigate the seating locations of students, we

divide the students’ seats into different groups. The simplest and most intuitive ways to do

this is to partition the classroom equally from left to right or front to back. For example,

sitting on the left-hand side of the classroom centre line is regarded as the left.

However, this simple partitioning method is not applicable in this research for two reasons:

1) The seats in the classroom were not evenly distributed from left to right. For example, the

seats were sometimes arranged in two semicircles, with one semicircle positioned towards the

center of the classroom and the other towards the side of the classroom. 2) The seats in the

classroom were not evenly distributed from front to back. First, the whiteboard occupies a

large area in the front of the classroom, which means dividing the classroom evenly from front

to back may result in a greater concentration of chairs in the back half of the classroom. More

importantly, the seats were not always arranged symmetrically like in traditional seating ar-

rangements (e.g. row-and-column and grouped tables), and many times, they were distributed

in a u-shape configuration according to the needs of teacher.

Therefore, we choose to group seating locations using the clustering technique. As one of

the most popular clustering methods, we employ the k-means algorithm [213] to group similar
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Back (173 responses) Right (150 responses) Left (165 responses)

Figure 4.4: Three different seating locations (back, right and left) in classrooms

seating locations and discover underlying patterns. However, for the k-means algorithm to

be effective, the number of the clusters must be predefined. There are two popular ways

of determining the optimal number of clusters: the Elbow method and the Silhouette method

[214]. After calculating the number of clusters using both methods, we identify that the optimal

number of clusters was three. We then run the k-means algorithm using the Scikitlearn [215]

Python package with n clusters = 3 and random state = 0. Figure 4.4 shows the clustering

results of the seating locations from 488 responses. From these diagrams, it is clear that there

are three different seating preferences in the classes: back, right and left. Therefore, in this

research, we mainly focus on those three seating preferences.

An overview of the seating preferences of each participant is shown in Figure 4.5, and dif-

ferent colours indicate the frequency of sitting in each area. It shows that different participants

tend to have very different seating preferences. For example, some participants (e.g. P10 and

P21) usually sit in the back of the classroom, while some (e.g. P6 and P16) sit the left or right.

Interestingly, some participants (e.g. P11 and P12) do not have obvious preferences for where

they sit. Figure 4.6 shows how the seating preferences of the participants vary by course. We
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Figure 4.5: Seating preference for each participant in all courses
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Figure 4.6: Seating preference for each participant in each course

find that participants often have different seating preferences in different courses, e.g. P3 never

sits in the back in Politics or English but usually sits in the back in Maths. According to the

education research, the potential reasons may be different student motivation and interests

[172], territoriality and the desire to feel comfortable in different learning environments [216],

and peer conditions within the classrooms [217].

4.4.2 Student Engagement and Physiological Signals

The distribution of overall engagement across student participants is shown in Figure 4.7a. The

overall engagement scores are calculated based on the five items in the questionnaire, where

1 = lowest engagement and 5 = highest engagement. We can see that different participants

usually have different engagement scores. Some participants (e.g. P5 and P9) tend to be

highly engaged in class most time while some participants (e.g. P16) have varying levels of

engagement in different classes. Based on the three seating preferences, the engagement score

are calculated across different courses in Figure 4.7b.

Then, we calculate the number of wearable signals across all courses in Table 4.2. There are

10 different courses, and students are divided into three groups: Maths, Language and Form

groups. ‘All’ indicates that all students are in one big group. Most of the classes are held in

rooms R1, R2 and R3. There is an extra room, R4 for one language group, R5 is the room

for Science, R6 is for Assembly and R7 is for Chapel. ‘Out’ indicates the playground, which is
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Figure 4.7: The overview of engagement score across participants and courses

Table 4.2: An overview of the number of wearable signals across all courses

Course Class type Room Number Signal traces

Math Math groups R1, R2, R3 36 197
Language Language groups R1, R2, R3, R4 44 181
English Form groups R1, R2, R3 31 172
Politics Form groups R1, R2, R3 37 190
Science Form groups R5 32 160
Health Form groups R1, R2, R3 18 64
PE Form groups Out 13 64
Form Form groups R1, R2, R3 6 29
Chapel All R7 2 28
Assembly All R6 2 35
Total N/A R1–R7, Out 221 1,120

used for the physical education course. For the wearable data, there are a total of 1,120 session

logs of signal traces that can be used to explore the physiological patterns related to student

engagement and seating preferences.

4.5 Results

In this section, we discuss the extensive experiments conducted to understand how individual

and group-wise seating experiences affect student engagement. We will answer the first re-

search question ‘How does seating proximity between students relate to their perceived learning

engagement? ’ in Section 4.5.1. We will answer the second research question ‘How do stu-

dents’ group seating behaviours relate to their physiologically measured engagement level (i.e.

physiological arousal and synchrony)? ’ in Section 4.5.2 and Section 4.5.3. More specifically,
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in Section 4.5.2, we investigate the correlation between the seating location and physiological

synchrony. Meanwhile, we study the group-wise classroom seating patterns and demonstrate

how they affect student engagement in different courses in Section 4.5.3.

4.5.1 Relationship Between Seating Behaviours and Perceived Student

Engagement

As discussed in Section 4.2.2, seating location has been found to be correlated with student

engagement. Although some researchers [201, 178] revealed how the seating proximity between

the student and teacher influences student engagement, satisfaction and course performance,

few studies explored how the proximity of students is correlated with learning engagement. In

this research, we define the following two terms: proximity of students and similarity of en-

gagement. Proximity of students is calculated as the seating distance ds between two students,

using the Euclidean distance [218]. Euclidean distance is the most commonly used distance

measure, which calculates the straight-line distance between two points on a plane and works

well on low-dimensional data. Therefore, the formula to calculate the proximity of student is

as follows:

ds =

√
(xa − xb)2 + (ya − yb)2 (4.1)

In Equation 4.1, xa and ya indicate the position where student Sa sat, as marked manually

by the student, and the upper left point on the figure has the x, y coordinates (0, 0). To

measure the similarity of engagement, we computed the Manhattan distance [219] de between

the engagement score of two students, Sa and Sb, where de = |Sa − Sb| , Sa ∈ [1, 5], Sb ∈ [1, 5].

The Manhattan distance works well on discrete/binary variables, and it considers the path

that can be realistically taken given the values of the attributes. Therefore, the similarity of

engagement E(de) is defined as follows:

E(de) = 1− de
4

= 1− |Sa − Sb|
4

(4.2)
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Figure 4.8: Seating and occurrence information for pairs of students

In Equation 4.2, E(de) is in the range [0, 1], where 1 means the participants’ engagements

are exactly the same, and 0 means the engagements are very different (i.e. one participant is

completely engaged while the other one is not engaged at all).

We then analyse the self-report engagement responses and seating behaviours of partic-

ipants from 92 out of 115 classes (23 classes with responses from only one participant are

removed). After removing duplicated responses and keeping the last response from the same

participants in each class, we got 1,123 unique pairs of instances (i.e. each instance had a unique

combination of two participants’ IDs and a class ID). The overall seating and occurrence in-

formation for each pair of students is shown in Figure 4.8. Figure 4.8a shows the number of

times the pairs of students appeared in the same class, where a darker colour indicates that the

pair usually sat in the same classroom (e.g. P21 and P13). Figure 4.8b shows average seating

distance between pairs of students sitting in the same classroom, where a darker colour means

that the two students usually sat far apart.

Figure 4.9 displays the distribution of the overall engagement and the seating distribution

for four example classes. The points indicate the annotated seating locations in the classroom,

as marked by different participants. A darker colour indicates a higher overall engagement
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Figure 4.9: Overall engagement and seating distribution over four example classes

score, where 1 is the lowest score and 5 is the highest. In particular, in the sub-figure Class

ID 140, we observe that points close together have similar colours, i.e. students who sat close

together tended to have similar engagement scores in this class. It is worth noting that while

engagement may change during a class, in this study we only asked students to report their

overall engagement for the whole class and complete the survey immediately after the class.

Typically, submission times are around scheduled times (i.e. 11:00, 13:25 and 15:35), although

they vary slightly for each participant. Therefore, all responses submitted before the next class

are considered to be feedback for the previous class.

Finally, we calculate the correlation between seating proximity and the similarity of en-

gagement for all participants. The experiment result shows that the similarity of engagement

is significantly negatively correlated with the seating distance (corr = -0.30 and p < 0.05).

This indicates that students who sit close together are more likely to have a similar learning

engagement than students who sit far apart. Interestingly, when considering each individual

participant, the similarity of engagement is significantly negatively correlated with the seating

distance for 18 out of 23 participants (p < 0.05), moderately negatively correlated with the

seating distance for two participants (p < 0.1) and there is no obvious correlation with seating

distance for three participants. The possible reason for this result may be due to individual

differences, i.e. the engagement of some students may be affected by those around them, while

other students may not to be affected by those around them.

Notably, one potential threat to the above findings is that the absolute seating position

on the whiteboard may affect student engagement [171, 174]. Therefore, we calculate the

Pearson correlation between the above two variables, where corr = 0.09 (p-value = 0.047),
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indicating that there is a negligible correlation between student engagement and absolute

distance to the whiteboard. A potential reason may be that the seating arrangement is ‘u-

shaped’ instead of the traditional ‘row-and-column’ most of the time, students sitting far from

the whiteboard usually face the whiteboard, while students sitting closer to the whiteboard

need to look sideways at the whiteboard. Therefore, the threat of absolute seating position

affecting student engagement is minimal in this research.

4.5.2 Relationship Between Seating Behaviours and Physiological

Synchrony

Physiological synchrony between individuals can be indicative of group engagement [76], e.g.

the synchrony of an audience laughing at the same joke or students in a classroom concentrating

on learning a complex math concept. Gashi et al. [28] found that engaged audiences exhibited

higher levels of physiological synchrony with the presenter. This can be extended to students

as the audience and the teacher as the presenter. The most effective teaching happens when

there is a synchrony between the students and the teacher [7].

As discussed in Section 4.2.3, various physiological signals have been explored to infer learn-

ing engagement and affective states. From a physiological point of view, time synchronisation

occurs when the physiological processes of two or more individuals are correlated with each

other [76]. Similar simultaneous changes in people’s physiological signals (e.g. EDA) can pro-

vide information about cognition load or task difficulty [208, 220]. Recently, the physiological

synchrony between individuals has been widely used in educational settings and has become

an effective way to infer group or individual engagement in an activity. In particular, Gashi

et al. [28] found that the engaged audiences exhibited higher levels of physiological synchrony

with the presenter, which can be extended to students as the audience and the teacher as the

presenter. It has also been found that the most effective teaching happens when there is a

synchrony between the students and the teacher [7]. Therefore, in this research, physiological

synchrony is used to represent the similarity in learning engagement, i.e. the higher the level of

physiological synchrony, the greater the similarity in student engagement between individuals.

Data Pre-processing. The physiological synchrony is derived for each pair of students
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Table 4.3: Summary of the Pearson rank correlation results between proximity of seating and
physiological synchrony across the courses. The asterisks indicate the statistically significant
results: *p < 0.05, **p < 0.01, ***p < 0.004

All Maths Language English Politics Science

EDA mixed -0.13* -0.14 -0.32*** -0.02 -0.11 -0.01
EDA tonic -0.12* -0.24* -0.27** -0.05 0.01 0.02
EDA phasic -0.02 0.09 -0.08 0.01 -0.21 -0.09

from the beginning until the end of each class. We then apply the following data prepossess-

ing methods to the EDA signals to remove noises in the data (e.g. flat responses, movement

artefacts and quantisation errors). First, we remove the incomplete data that was gathered

throughout the class and discard signals containing many movement artefacts or flat responses.

Second, similar to [7, 30], a median filter with a window of five seconds is applied to the EDA

signals, which reduces the artefacts but preserves typical EDA edges. Third, we decompose

the EDA signals into two parts: tonic and phasic [104, 128]. The tonic component changes

slowly and reflects the general sweat level influenced by the body or environmental tempera-

tures. The phasic component indicates rapid changes related to external stimuli. The EDA

signals are decomposed using cvxEDA [129] with the convex optimisation methods. Finally,

we normalise the original values of the EDA signals to the range [0, 1] to make the individual

signals comparable.

Correlation Results. After the data preprocessing, the physiological synchrony is quan-

tified using the students’ normalised EDA signals. Based on prior research [106, 28, 208], we

adopt one of the most popular methods to represent physiological synchrony Pearson product-

moment correlation coefficient, which measures the linear dependence between two signals.

P-values are tested against both the α = 0.05 and the corrected threshold αc = α
n = 0.004,

where n = 12. The latter is known as Bonferroni correction [221], which is applied when n mul-

tiple statistical tests are performed simultaneously. We then analyse the relationship between

the proximity of students and physiological synchrony using 368 pairs of instances, including

the unique combination of two participants’ IDs and a class ID. The number of physiological

synchrony values (368 pairs) is much lower than the perceived student engagement (1,123 pairs)
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for the following reasons: (1) Some students reported their perceived engagement but did not

wear the E4 wristbands during the class. (2) Some students wore the E4 wristbands during

the class, but the signals were not recorded for the entire class owing to the battery running

flat or the wristband turning off accidentally. (3) The quality of some E4 signals was too low

(e.g. too many flat responses), and these signals were removed during the preprocessing stage.

Then, we run the correlation analysis separately on the mixed EDA signals, tonic EDA

signals and phasic EDA signals. Prior to the Bonferroni correction, there is a significant

negative correlation between seating proximity and physiological synchrony (corr = -0.12 and

p = 0.03). These results suggest that students sitting close together tended to experience

higher physiological synchrony. However, after Bonferroni correction, this correlation is not

significant. Therefore, it should not be considered as conclusive. One potential reason for this

lack of significance is that we did not account for the impact of different courses during the

correlation analysis.

Impact of Different Courses. Next, we explore the correlation results across the courses.

We only focused on the main courses: Maths, Language, English, Politics and Science. The

other courses, such as Form, Chapel and Health are not considered owing to the limited num-

ber of physiological signals. Table 4.3 summarises the results of the Pearson rank correlation

between the seating distance and physiological synchrony. Before applying Bonferroni correc-

tion, seating proximity is only highly correlated with physiological synchrony in the Language

class (EDA mixed: corr = -0.32, p = 0.002, EDA tonic: corr = -0.27, p = 0.009) and Maths

class (EDA tonic: corr = -0.24, p = 0.03), and no other significant correlation has been found.

These results are interesting, and one possible reason for the results is that the physiological

synchrony of students can be depicted more accurately in Maths or Language classes than in

other classes, or students who sit close together are more likely to have physiological synchrony

in Maths and Language classes.

In addition, we observe that statistically significant correlations are mainly reflected in

the mixed EDA and the tonic EDA signals. No significant correlation has been found based

on the phasic EDA signals. A possible reason is that the phasic EDA signals are related

to fine-grained responses to internal and external stimuli, which are usually different among
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Table 4.4: Description of the features computed for electrodermal activity signals.

Feature name Description of features

eda/scl/scr avg Average value for the EDA, SCL, SCR
eda/scl/scr std Standard deviation for the EDA, SCL, SCR
eda/scl/scr n Number of peaks for the EDA, SCL, SCR
eda/scl/scr a p Mean of peak amplitude for the EDA, SCL, SCR
eda/scl/scr auc Area under the curve of the EDA, SCL, SCR
scr frequency The frequency of phasic increases in skin conductance
num arouse Number of arousing moments during the class
ratio arouse Ratio of arousing and unarousing moments
levelk Ratio of the number of levelk and the length of Sk
eda/tonic/phasic pcct Pearson correlation coefficient with teacher
eda/tonic/phasic pccs Pearson correlation coefficient with average value of students

students. Despite the small variations, we assume that the calculated physiological synchrony

reflects general changes in student engagement during a class. Therefore, it can be seen that

calculating physiological synchrony based on the tonic and mixed EDA signal works well, which

may be because tonic signals indicate general arousal and learning engagement in the whole

class. Since the mixed signal includes both the tonic and phasic signals, it reflects general

engagement and preserves some fine-grained information from the phasic component [28].

When Bonferroni correction is taken into account, the correlation between seating proximity

and physiological synchrony is only significant when computed using mixed EDA signals in

Language classes. The results in other courses only exhibit loose statistical significance after

applying Bonferroni correction. Since we do not have a prior hypothesis for different courses,

the significance before Bonferroni correction may suggest a hypothesis for future exploration.

4.5.3 Relationship Between Seating Behaviours and Physiological Arousal

As suggested in prior research [208, 76, 222], physiological arousal and synchrony are both

regarded as effective ways to infer people’s mental activity and cognitive load. Physiological

arousal is an activity of the sympathetic nervous system, and it can be measured using EDA

signals. Measuring physiological arousal is a useful way to understand people’s emotional and

cognitive processes. In general, increases in arousal are related to cognitive demand [223],
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attention level [224] and learning engagement [30]. In this research, we extracted some widely

used features of EDA signals from previous research [28, 30] to represent the general student

engagement level.

Extracted Features. Table 4.4 lists the extracted features from EDA signals based on

three categories [28], namely, general engagement, momentary engagement and synchrony:

(1) General engagement reflects the overall changes in engagement during a class. In this

research, we adopted the features proposed in the literature [28, 225, 30, 188], including the

average, standard deviation, number of peaks, average value of peak amplitude and area under

the curve, which are calculated from EDA, SCL and SCR signals. (2) Momentary engagement

features identify evident increments in physiological arousal [226], including the SCL frequency,

number of arousing moments, ratio of arousing and non-arousing moments and the ratio of the

number of levelk and Sk as suggested in [28]. (3) For each student, we computed the synchrony

features, such as Pearson correlation coefficient with the teacher and the average synchrony of

students [30].

Group-level Seating Experience. Unlike using physiological synchrony to identify sim-

ilarities in student engagement, it is difficult to intuitively compare physiological arousal be-

tween individuals because of the numerous features that represent physiological arousal (see

Table 4.4). Therefore, we consider applying the clustering technique to divide the students into

groups, which helps us compare patterns in physiological arousal and understand group-level

student behaviours. The groups are built based on the extracted features from all EDA session

logs of signal traces.

In the clustering stage, the k-means algorithm [213] is adopted for clustering the features

extracted from EDA signals. First, we normalise all extracted features to eliminate extreme

values and ensure high-quality clusters are generated, which is an essential step because the

default Euclidean distance metric is very sensitive to changes in the differences [227]. Second,

we apply the k-means algorithm to the extracted features indicating physiological arousal and

identify clusters of students. The Elbow and Silhouette methods [228] are used together to find

the optimal numbers, k, and we find that k = 3. Next, we analyse the statistical characteristics

(e.g. average value) of each clustered group and calculated students’ self-reported responses in
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terms of seating behaviours and learning engagement.

After the clustering, we analyse the distribution of seating preferences (i.e. back, left and

right) among different clusters (see Figure 4.10). The clusters are divided based on the sim-

ilarities in physiological arousal features, and the seating preferences are calculated based on

self-report responses, as introduced in Section 4.4. To determine whether the seating prefer-

ences and clusters of physiological arousal are likely to be related or not, we adopt the Pearson’s

chi-squared test of independence [229] on above two variables, where χ2 = 15.908, degrees of

freedom = 4, p-value = 0.003. Since the p-value is lower than 0.05, we reject the null hy-

pothesis and reveal that the relation between the clusters of physiological arousal and seating
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Figure 4.11: The clustering results of EDA signals for long and short classes
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Table 4.5: The learning engagement of student groups with different courses and class lengths

Language Math English Politics Science

Cluster 1 (short) 3.18 (0.87) 3.34 (0.82) 3.81 (0.70) 3.12 (0.75) N/A
Cluster 2 (short) 3.41 (0.90) 3.73 (0.78) 3.78 (0.70) 3.32 (0.84) N/A
Cluster 1 (long) 3.53 (0.81) 3.46 (0.83) 3.72 (0.68) 3.53 (0.75) 3.58 (0.80)
Cluster 2 (long) 3.70 (0.75) 3.45 (0.93) 3.93 (0.72) 3.41 (0.73) 3.61 (0.68)

preferences are significant. Figure 4.10 displays that the students in Cluster 2 tend to sit on

the left, while the students in Cluster 3 seldom sit at the back of the classroom. The students

in Cluster 1 are almost equally likely to sit in any position, but they have a slightly greater

tendency to sit at the back of the classroom.

Impact of Course and Class Length. Next, we explore how physiological arousal is

related to perceived student engagement. Two factors may affect the clustering results: the

length of the class and the course itself. Figure 4.11a and Figure 4.11b show the average value

of the EDA signals in different clusters for long and short classes. First, we divide the EDA

signals based on class length: long classes (80 min) and short classes (40 min). Then we identify

that the optimal number of clustering is 2. For short classes, the statistical characteristics of

self-reported overall engagement in Cluster 1 are mean = 3.64, std = 0.82, and in Cluster 2 are

mean = 3.41, std = 0.73. Results from t-test [230] indicate that two clusters are significantly

different in perceived emotional engagement, where t-statistic = -2.01, p-value = 0.04. From

Figure 4.11b, we find that there are several peaks in the EDA signals in Cluster 1, indicating

higher emotion arousal, as discussed in the literature [104]. The perceived engagement scores

also support the clustering results of the EDA signals. However, for long classes, we could not

find significant differences in any dimension of engagement in the two clusters (p-value > 0.05).

We then calculate the learning engagement of student groups in different courses. We do

not consider courses with fewer than 100 signal traces and only focused on the courses with

sufficient data (see Table 4.2), i.e. Language, Maths, English, Politics and Science. The student

groups are then generated based on the clustering results of the physiological arousal features,

and the optimal number of clusters is 2 for the above courses. Table 4.5 shows the learning

engagement of the student groups in different courses and the length of classes. The learning
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engagement in short classes for Science is N/A because all Science classes are the same length

(i.e. long). Table 4.5 shows a significant difference in learning engagement in the two student

groups for short classes in the Maths courses (average learning engagement of Cluster 1 = 3.34

and Cluster 2 = 3.73. Similar phenomena occurs in the short classes for Language courses and

long classes for English courses. The potential reasons for not finding an obvious difference in

the learning engagement in Politics and Science courses are as follows: (1) Students tend to

have similar learning engagement in the above two courses than the other courses, making it

difficult to determine to impact of the courses on the student groups. (2) There is a lack of

physiological signals or low-quality physiological signals in these classes. Students need to do

experiments in Science classes, resulting in a high chance of signal noise, such as poor contact

between the sensors and the skin.

4.6 Limitations and Implications

Investigating how student seating experiences relate to learning engagement can help educa-

tors and policymakers improve student engagement in a variety of ways, such as providing

better seating arrangements, organising more effective study groups and addressing problems

such as poor academic achievement, student boredom and disaffection. Our study adds quan-

tifiable evidence on the relationship between seating location and student engagement. The

use of physiological arousal and physiological synchrony provides an effective method of un-

derstanding student engagement in real-time, with less burden on students than traditional

questionnaires.

This research addresses possibilities to developing an intelligent seating recommendation

system integrated with wearable devices, to optimise student engagement levels during class.

This system could analyse student engagement in real-time and provide recommendations for

the best or alternative seating locations in the classroom. One one hand, the system may learn

to understand students’ seating preferences by analysing their previous seating patterns and

provide learning tips for students, e.g. if a student’s engagement decreases as a result of their

seating choices, the system could suggest changing to another seat or increasing participation

in class activities. Teachers will be able to help manage students’ progress more efficiently
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by monitoring behavioral patterns in the classroom. On another hand, capturing student

engagement and seating experience may also aid in curriculum design, resulting in improved

teaching effectiveness and improved teaching style.

This study has some limitations that need to be overcome in future studies. First, although

efforts are made to ensure that the modified five-item questionnaire captured the same con-

structs as the original questionnaire, validating the modified version was challenging due to

the limited number of participants and budgetary constraints. It is also not feasible to adopt

the traditional questionnaires (e.g., EvsD [115]) in education, as they often contain dozens of

questions which would create a burden on students if they needed to be filled out after each

class. However, the risk of a lack of validity of the questionnaire is minimal because we only

slightly adapt it to suit the high school context, and the adapted questions are almost identi-

cal to those used in widely accepted questionnaires [115] in the educational context. Second,

the study into group-wise experiences is limited to studying student peers and groups based

on clustering. Future research could investigate different psychological patterns within and

between student groups.

Third, the accuracy of the EDA signals measured by the E4 wristbands is limited. Menghini

et al. [231] evaluated the accuracy of the E4 wristbands compared with the gold-standard

sensors and found that similar accuracy could not be achieved using EDA signals from the

wrists and fingers. A promising solution to improve the accuracy of the E4 may be lead wire

extension, which would allow EDA recordings to be taken from the finger or palm rather than

the wrist, thereby eliminating any potential site difference. However, in this study, the E4

wristbands are the best choice to obtain data without disturbing students in the classroom.

Furthermore, since participants were required to wear wristbands during school, sweat

accumulation may have affected our results, especially given the hours of recording and the

use of dry electrodes. In our data collection, it is challenging to control the factors related

to the learning environment such as the humidity and temperature. However, the students’

classrooms and teaching buildings were equipped with central air conditioners, so that the

indoor temperature was not too high/too low, and the students did not sweat too much. After

each class (40 minutes or 80 minutes), students would take breaks and walk, which is conducive
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to the evaporation of sweat from their body surface. When analyzing EDA signals, the tonic

signal changes slowly and reflects the general sweat level influenced by the body or environment

temperatures, while the phasic component indicates the rapid changes related to the external

stimuli. Despite the influence of sweat accumulation, the phasic EDA may still indicate student

engagement.

Last but not least, in our research, some procedures for collecting and processing EDA data

may not have strictly followed the best standards of EDA practice as suggested by Babaei et

al. [188] (e.g. caffeine control, medication control, counter-balancing of external factors), thus

threatening the validity our results to some extent. However, with our data collection spanning

four weeks, it was not feasible to control for various external factors without burdening students

and affecting their daily learning. In addition, due to the relatively low quality of the collected

EDA signals compared to laboratory studies, it was challenging for us to apply standard settings

to signal processing in the recommended way [188]. Therefore, we have followed some EDA

signal processing methods that have proven effective in similar data collection environments

[6, 30]. In the future, more community standards of EDA practices could be explored for in-situ

studies to improve the validity of research.

4.7 Conclusion

In this chapter, we explored how student seating experiences were related to their emotional

and behavioural engagement by understanding their physiological and behavioural patterns

during a four-week data collection. The results showed that the individual and group-wise

classroom seating experience is statistically correlated with both perceived and physiologically

measured student engagement (physiological synchrony and physiological arousal). We found

that students who sat close together were more likely to have similar learning engagement and

higher physiological synchrony than students who sat far apart.



Chapter 5

Profiling Individual Personality

Traits and Response Behaviours

from Mobile Sensing Data

In Chapter 3 and 4, we used wearable sensing and environmental sensing data for human

behaviour modelling. Capturing this data usually requires specific sensors to be installed or

worn. In relation to RQ-4, this chapter explores using unobtrusive mobile sensing for user

behavioural profiling. We will consider two real-world user behaviour prediction scenarios.

The first scenario relates to modelling users’ mental characteristics (i.e. Big Five personality

traits). We will propose some important features that allow us to describe human activities

based on mobile phone logs, call logs and accelerometer data and use these for the first time to

predict human personality traits. The results reveal that the predicted personality scores were

close to the ground truth, with an observable reduction in errors in predicting the Big Five

personality traits in both male and female participants. The second scenario will investigate

the effect of individuals’ smartphone usage behaviour and mood on notification response time.

We conduct an in-the-wild study with more than 18 participants for five weeks. The proposed

regression model accurately predicts the notification response times using the users’ current

mood and physiological signals.

95
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5.1 Introduction

Globally, smartphones are widely used and contain a wealth of sensors that can be used to easily

collect large amounts of data relating to user behaviours (e.g. communication, location, media

consumption and notification responses) in an unobtrusive and timely manner. These digital

footprints derived from smartphones can reveal users’ psychological characteristics, such as

personality traits and emotions, which can help researchers, developers and managers better

understand the interests and needs of their mobile users. Past research [232, 233, 120] has

shown that it is possible to predict a person’s personality through historical mobile usage data,

such as calls, messages, app usage and location logs. To predict personality traits using mobile

phones, researchers have mainly focused on exploring phone activities or app usage. However,

to date, nobody has taken advantage of combining data on mobile usage behaviours with data

on physical activity intensity from accelerometer sensors.

Accelerometers have been widely applied in various devices, such as mobile phones and

fitness wristbands, to detect the intensity of human physical activity [234], which has been

proved to be significantly correlated with personality [235]. In this chapter, we combine the

physical activity intensity with phone usage behaviours to predict human personality traits.

We propose several important metrics based on diversity, dispersion and regularity, which

are defined in Section 5.3.1.2. Then we categorise these features based on different temporal

factors and genders and apply support vector regression (SVR) to build a predictive model for

human personality traits. The results of the experiment showed that using data relating to

physical activity intensity based on accelerometer data can improve the predictive accuracy of

the model. However, the improvement in predictive performance was different between males

and females when the physical activity intensity was considered.

In addition to understanding users’ psychological characteristics using smartphone sensing

data, mobile computing can benefit users by providing intelligent interruption management.

Smartphones frequently send users notifications, such as emails, messages, news and app update

information. Inappropriate interruptions can have multiple effects on users, such as causing

annoyance, increasing anxiety levels [236], decreasing productivity [237], negatively affecting

task performance [238] or impacting emotional state [236]. For instance, Perlow et al. [239]
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found that software engineers in a technology company had difficulties meeting deadlines due to

frequent interruptions, which highlights the importance of interruption management to reduce

distractions.

The notification is the prevailing mechanism on smartphones to convey timely and impor-

tant information. They demand attention and can cause stress and frustration when delivered

at inappropriate times. An interruption during a task can split the user’s attention between

two interactive tasks [240]. People need to decide whether the benefits of the interruption

offset the loss of attention to the original task. Different actions can be taken to deal with

interruptions, such as ignoring the interruption, postponing the required processing to a more

convenient time or immediately resolving the interruption. These measures may delay resum-

ing the original task and reduce task performance to varying degrees [241]. Receptivity refers

to a user’s reaction to an interruption, which may indicate the level of interruptibility of the

user and their experience of the interruption [242]. In some cases, even though the notifica-

tion is interruptive, the user can still be receptive to the notification. Previous studies have

shown that users’ receptivity to notifications is influenced by many factors: (1) informational

qualities of the notifications, e.g. interest, entertainment, relevance and actionability [242]; (2)

mobile usage, such as the time of the interruption and the type of app pushing the notification

[243, 242]; (3) demographics, such as personality traits [244]; and (4) personal dynamics, such

as location [245], transitions between activities [246] and social roles [247].

However, we propose a system to manage the automatic pop-up notifications of frequently

used apps, which has not been attempted by other researchers before. Users’ receptivity varies

based on physical, psychological and affective conditions, and the accuracy of existing systems

in addressing these conditions is still relatively low [248]. The difficulty of including these

conditions can be explained by an example: Users may get annoyed (psychological) if an email

from their boss suddenly pops up while they are concentrating on writing and are in a state

of ‘flow’ (physical). However, it is not clear how the user would feel (affect) if this email

notification were postponed. On the one hand, they may be relieved at not being disturbed,

but on the other hand, it could cause stress if they were waiting for important information to

help them with a problem they are experiencing.
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Therefore, this chapter investigates the effect of individuals’ emotions and smartphone

usage behaviours on notification response times. We conduct an in-the-wild study with more

than 18 participants for five weeks. The results of extensive experiments showed that the

proposed regression model can accurately predict the response time to notifications using the

user’s current mood and physiological signals. We also investigate how physiological signals

(collected from E4 wristbands) can be used as an indicator of mood and discuss individual

differences in app usage and categories of smartphone apps and their impact on notification

response times.

In summary, the contributions of this chapter are as follows:

• For the first time, we predict Big Five personality traits by combining physical activity

intensity data with traditional phone activity data. Several novel metrics are proposed

based on various categories: diversity, dispersion andregularity. We also identify signif-

icant associations between mobile phone usage behaviours and self-reported personality

traits. We found that the features describing physical activity intensity from mobile

accelerometer signals can improve the performance of personality prediction, with ob-

servable reductions in errors in both males and females.

• We conducted an in-situ study with 27 participants over a five-week period. In total, we

collected 42,270 notifications with 3,236 ESM responses and more than 5,920 hours of

physiological signals from Empatica E4 wristbands. We then explored diverse notification

response behaviours of different participants and investigated the relationships between

multiple factors (e.g. mood and apps) and notification response times. We found a

statistically significant correlation between response time and in-use apps.

• We conducted extensive experiments to predict the notification response time for each

participant. The experiment results showed that the proposed model achieved high pre-

dictive performance. We then derived the most useful features for each participant to

achieve a meaningful and personalised prediction of notification response. In addition,

we investigated how the mood-related features improved the predictive performance by

utilising the ESM responses and physiological signals.
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5.2 Related Work

5.2.1 Inferring Personality Traits through Mobile Sensing

Machine learning techniques have been applied successfully on sensor data to predict human

mobility [249], identity [250], activities, transportation modes and complex behaviours [251].

Users’ personality traits can be predicted using various media apps. Online social networking

sites have been used to reflect user personalities, e.g. Facebook profiles [252] and Facebook

messages [253]. Nhi et al. proposed a personality mining framework to exploit information

from videos (e.g. YouTube clips), which include visual, auditory and textual perspectives [254].

Xin et al. demonstrated the relationships between active users’ micro-blogging behaviours and

personality traits [255]. Other works have shown that it is possible to predict the personality

traits of users by exploring their mobile usage behaviours, which can be inferred from mobile

data, such as call logs, app logs, Bluetooth logs and message logs [256, 233].

Cabrera-Quiros et al. [257] recognised self-assessed personality during crowd mingling

scenarios using accelerometers and proximity sensors embedded in wearable devices alone.

Although the physical activity of each person was considered, people were all required to wear

the same wristband in specified scenarios, which is not representative of daily life. Recently,

Weichen et al. [120] predicted personality traits through mobile sensings, such as ambient

sound, ambient voice, physical activity and phone activity. However, they only computed the

sedentary duration in each hour to represent the pattern of physical activity, which is simple

and näıve, since they did not consider the entire physical activity intensity distribution. To

estimate phone activity, they merely used the number of phone lock/unlock events and unlock

duration but did not consider the diversity, regularity or dispersion of phone contact.

Mobile logs (phone and message activity) are easily accessible and have been used for ef-

ficient personality prediction [233]. To the best of our knowledge, no research has attempted

to infer personality by combining traditional mobile activity with physical activity intensity,

which has been proved to be strongly associated with personality [235]. Physical activity inten-

sity can be estimated using data from accelerometers [234], which have been widely deployed

in multiple devices, such as mobile phones and fitness wristbands.
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5.2.2 Interruptibility Management and Receptivity

In this chapter, we define response time as the time that elapses between receiving a notification

and opening the corresponding app. Okoshi et al. [258] presented a system to detect opportune

moments for interruptions based on click rate gain using mobile sensing and ML methods.

They calculated the users’ click response times by measuring the time between a notification’s

arrival and the response to the notification, i.e. clicking on the notification. This data was

logged along with contextual information from the smartphone and the data were evaluated.

A trained linear regression model then identified whether a moment in time was an opportune

moment to display a notification based on the extracted features. The adaptive notification

component then delayed the presentation of notifications to the user until an opportune moment

was detected. This breakpoint-based notification scheduling system resulted in increased click

rates and quicker response times from users.

Saikia et al. [259] developed an optimisation process to reduce the reaction time and

increase the opening rate of notifications for a mobile news app. Similar to Okoshi et al. [258],

they defined the response time as the time between receiving and opening the notification and

gathered additional contextual data, such as the category of the notification, time of the day

and location. The notification opening rate, which is similar to the click rate [258], was used

to optimise the opening rate and minimise the response time. Saikia et al. reduced reaction

time by 13.3% and improved opening rates by 65.24%. Westermann et al. [260] studied the

impact of the contextual factor time, i.e. the time of the day and the day of the week, on

receptivity to notifications on Android smartphones. They sent advertisement notifications

about popular brochures, and the response times were recorded as the time between receiving

a notification and opening the app. The results exhibited notable variations in response times

and notification-triggered app launch numbers on different days of the week and at different

times of the day.

Fortin et al. [261] highlighted the correlation between SCR and the prediction of perceptions

of smartphone notifications. To study the impact of user activity on the determined signals,

the participants were asked to perform an inactive and active task during the measurement.

They were directed to note the stimulus that caused them to perceive the notification and
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press the corresponding button on a Pebble smartwatch placed next to them. The experiments

showed that notifications perceived because of their tactile properties (vibration) stimulated

greater SCRs with higher amplitudes than those perceived through auditory properties (sound).

A logistic regression model was trained to examine whether a perception prediction method

based on skin conductance could aid notifications, including the smartphone’s ringer mode as

a predictor variable. This model successfully identified perception in 75% of true cases when

participants perceived the notification and 38% of missed notifications.

Mehrotra et al. [262] investigated the factors that make a smartphone notification disruptive

and the impact of this on response time. An Android app called ‘My phone and me’ was

created. The app uses Android’s Notification Listener Service to access notifications and

Google’s Activity Recognition API and ESSensorManager to receive context information. The

app also triggered questionnaires every four hours between 8 am and 8 pm. Reaction time was

considered the time from the notification arrival to the time it was acted upon. The modes of

identifying the notification (i.e. ringer or vibration) and the user’s personality traits were also

noted. The results showed that users responded to high-priority notifications much faster than

other notifications, and those from less frequently contacted contacts were responded to the

slowest. Notifications were considered most disruptive when the user was performing a task

and least disruptive before they started a new task or while they were idle.

Zueger et al. [263] predicted the interruptibility of 13 software developers based on com-

puter interaction and heart-, sleep- and physical activity-related data. They found that the

interaction with a computer gave more information about interruptibility than the biometric

data. However, using both types of data produced the best results.

5.2.3 Mood Sensing Approaches

Because the term mood is frequently used in this chapter, it is important to define it. Mood

is a diffuse affective state that describes an individual’s subjective feeling over time. Unlike

emotions, mood lasts for hours or days, and its intensity is usually low. Most often, it is not

possible to assign a specific trigger to or reason for our mood. Nonetheless, mood influences

our behaviours and experiences [264].
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Changes in activities, moods and behaviours of users provide valuable insights for providing

context-aware services and minimising unwanted interruptions. According to recent research in

psychology, the frequency of change or the rate of instability in various characteristics can affect

the interruptibility of users [265]. In the field of attention management, various consequences

have been investigated, including the influence of interruptions on mood.

For example, Zijlstra [266] showed that interruptions cause negative emotions. However,

mood is also an internal stimulus that results from our insights and influences our interrupt-

ibility [267, 268]. Therefore, emotions and stress are not only consequences of interruptions

but also influence our interruptibility. Yuan et al. [244] proposed using personality traits to

group similar users in addition to considering contextual information, such as location, changes

in the state of the user, time, transition state, current activity and mood to predict reactions

to interruptions and the level of interruptibility.

Khan et al. [269] proposed a new approach for automated mood recognition (AMR) in

the smart office environment, which reduces computational requirements by requiring fewer

mood models. This was done by clustering physiological signals by groups of people who sense

emotions in the same way. They used ML models for classification and regression, which were

trained based on the extracted features of users in common perception clusters by recognising

mood. Eight different categories of moods were recognised, each with three different levels

denoting low, medium and high intensities. The proposed approach seems to be a trade-off

between the requirement for a large number of personalised mood models and the insufficient

performance of generalised models for AMR. The results showed average F1 scores of 0.76 and

0.79 for perception clusters and personalised AMR, respectively.

Current approaches in the field of attention management concentrate on notifications and

their impact on human behaviour and wellbeing. It is known that receiving notifications can

negatively impact our mood and trigger stress. It has also been shown that the reverse is true,

i.e. our mood influences our behaviour towards notifications and our interruptibility. In this

study, we want to go one step further and consider the effects of our mood on notification re-

sponse times. For this purpose, we extend the current state of research by adding physiological

signals to moods captured via ESM. We aim to identify whether mood directly affects response



Inferring Personality Traits with Mobile Computing 103

Agreeableness

Conscientiousness

Neurotism

Openness

Extraversion

1 2 3 4 5

Figure 5.1: Average Big-5 personality scores

time. Using individual regression models, we aim to predict the receptivity of each user.

5.3 Inferring Personality Traits with Mobile Computing

5.3.1 Methodology

5.3.1.1 Participants and Procedure

In this research, we exploited a dataset including 55 participants living in a residential commu-

nity, consisting primarily of young families, adjacent to a major research university in North

America between March 2010 and July 2011 [270]. Each participant was equipped with a

mobile phone running the Android OS and the sensing software Funf [270], which is designed

to periodically collect mobile data. The software operates in a passive way and does not affect

users’ normal usage of the mobile phone. At the initial stage of data collection, each participant

completed a personality survey, and Big Five scores were calculated [271].

The Big Five personality framework is one of the most important measures of personality

traits [271, 272] and consists of five dimensions: extraversion, agreeableness, conscientiousness,

neuroticism and openness to experience (openness). Extraversion reflects the degree to which

a person is energetic, sociable and talkative. Openness represents the tendency to be curious

and inventive. Agreeableness usually relates to the potential to be friendly and compassionate

rather than suspicious and hostile to others. Conscientiousness represents the tendency to be

organised, efficient and careful. Neuroticism is the tendency to be nervous and sensitive rather
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than confident and secure. Figure 5.1 shows the average scores for the five different personality

traits in our dataset, where 1 is the lowest score and 5 is the highest score.

After removing participants who did not fully complete the Big Five survey, our final

sample comprised 52 participants (27 female and 25 male). For this study, we mainly focused

on users’ activity data, including phone activity and physical activity. Phone activity data,

such as calls and text messages received or sent, have been widely used in personality prediction

[233]. Physical activity data inferred from accelerometers has been proven to have a strong

association with personality [235]. Therefore, in this research, we limited the scope of the

study to the participants’ call logs, text message logs and accelerometer logs, which are easily

accessible for future mobile data collection.

For accelerometer logs, raw three-axis measurements were sampled at rate of 5 Hz for 15

sec every 2 min. Participants were not constrained in the way they could carry the phone. For

call logs and message logs, the human-readable texts were captured as hashed identifiers. For

more details about the dataset, please see [270].

5.3.1.2 Activity Behaviour Metrics

Personality can be evaluated using the Big Five model, which consists of five major dimensions

of personality traits: Openness, Extraversion, Agreeableness, Conscientiousness and Neuroti-

cism. To better understand the daily patterns of human activity, we computed several metrics

to meaningfully distinguish between personality traits. The metrics are divided into three cate-

gories: dispersion, diversity and regularity. We used these metrics to evaluate the participants’

phone activity and physical activity. Phone activities include calls and message interactions,

which were computed separately based on the metrics. For physical activity, we first parti-

tioned the raw accelerometer data into 24-hour periods and processed it in hourly increments.

We then used the hourly mean amplitude deviation (MAD) [273, 274] to assess the intensity

of physical activity.

MAD =
1

n

∑
|ri − r|, (5.1)

where n is the number of accelerometer data samples in each time period, ri is the resultant
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acceleration at the ith time stamp and r represents the mean resultant value for the time period.

ri can be calculated using the following formula:

ri =
√
x2
i + y2

i + z2
i , (5.2)

where xi, yi and zi represent the x, y and z directions of the raw acceleration signal. Next,

we computed metrics to assess activity behaviours as follows.

Dispersion of activity behaviours depicts how sporadic a behaviour is. In our research,

SD was used to evaluate the dispersion of phone activity and physical activity intensity. As

people tend to have different activity patterns at different times (i.e. more physical activity

over weekends and fewer phone calls at night), we computed the SD separately for three time

periods (i.e. day, evening and night) on weekdays and weekends during the data collection

period.

Diversity of activity behaviours refers to the level of diversity of users’ activities. Shannon

entropy measures the amount of disorder in a system, which can be used to measure the

diversity of users’ contacts using the following equation:

S = −
n∑
i=1

Fi log Fi, (5.3)

where Fi means the frequency with which a user s interacts with i of all contacts n. Higher

entropy means that the user s interacts equally with a lot of contacts, and lower entropy

happens when the user mostly interacts with a few specific contacts. Shannon entropy was

used to evaluate the diversity of phone activity in this study.

Regularity of activity behaviours refers to regular patterns of activity. We used the

regularity index (RI) [120] to calculate the difference between the time periods T on two

different days. First, we rescaled the data for each participant to fit the range [-1,1], where

-1 corresponds to the minimum value in the original data and 1 corresponds to the maximum

value. The regularity index is positive if the values are close together and negative if they are

not. We then defined the RI of the time period t between day i and day j as follows:
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Figure 5.2: Kernel density distribution of five personality traits in the data set

∀(i, j) ∈ S,RITi,j =
1

T

T∑
t=1

xitx
j
t , (5.4)

where S is set to the two time period pairs and xit and xjt refer to the rescaled values at

hour t in the time period T . We computed the average RI values from every possible pair in

the following sets: (1) all days, (2) weekdays, (3) weekends, (4) weekday days, (5) weekday

evenings, (6) weekday nights, (7) weekend days, (8) weekend evenings and (9) weekend nights.

The RI was used to evaluate the regularity of phone activity and physical activity of the study

participants.

To prove the significance of the advantages of the extracted physical activity features and

to aid in comparison with prior research, we obtained traditional phone activity features based

on the prior literature [233], including average inter-event time, variance in inter-event time,

response rate, response latency, percentage during the night and percentage initiated. Table 5.2

summarises the features used in our study.

5.3.1.3 Big Five Personality Ground Truth

We used the self-reported Big Five results from the participants as the ground truth for various

personality traits. The scores were computed based on 52 questions related to personality traits

[275], with scores in the range 1–5, where 1 is the lowest score and 5 is the highest score for

the personality trait. Figure 5.2 shows the distribution of the five personality traits by gender.

The descriptive statistics (i.e. mean, SD, median, minimum and maximum) are shown

in Table 1 for the entire population and by gender. For the entire population, the average

score for all personality traits was close to 3. The average score for agreeableness was approx-
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Table 5.1: Overview of the Big Five scores for total/male/female participants

Gender Personality Traits Mean Std. Dev. Median Min Max

Total

Extraversion 3.26 0.86 3.13 1.50 4.88
Agreeableness 3.83 0.52 3.78 2.78 5.00
Conscientiousness 3.64 0.58 3.78 2.44 4.67
neuroticism 2.79 0.74 2.88 1.13 4.25
Openness 3.61 0.70 3.70 2.20 4.90

Female

Extraversion 3.38 0.87 3.63 1.50 4.63
Agreeableness 3.95 0.50 3.89 3.11 5.00
Conscientiousness 3.65 0.64 3.67 2.67 4.67
neuroticism 3.00 0.65 3.00 1.38 4.13
Openness 3.44 0.72 3.50 2.20 4.60

Male

Extraversion 3.13 0.84 3.00 2.00 4.88
Agreeableness 3.71 0.54 3.67 2.78 4.78
Conscientiousness 3.62 0.53 3.78 2.44 4.67
neuroticism 2.56 0.77 2.38 1.13 4.25
Openness 3.80 0.64 3.90 2.50 4.90

imately 4, which was the highest score, followed by conscientiousness, openness, extraversion

and neuroticism in descending order. Agreeableness had the lowest SD, which means that the

agreeableness scores for all participants were close to the mean.

Interestingly, we found that female and male participants had different distribution patterns

in the five personality traits. Females scored higher on neuroticism than males (t-test p-value

= 0.03), which suggests that the females in this population sample were more sensitive and

emotional than the males. In addition, the males scored higher on openness than females,

which suggests that the males in this population sample were more likely to be curious, and

the females were more likely to be cautious.

5.3.2 Feature Analysis

We extracted features based on the introduced metrics and time spans in Section 5.3.1.2 (see

Table 5.2). We defined the daytime period as 9:00 am to 6:00 pm, the evening period as 6:00

pm to 12:00 am and the night period as 12:00 am to 9:00 am.

Since most features, except for the entropy metrics, were strongly positively skewed, we

applied log transformation before conducting the correlation analysis. The Pearson correlation
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Table 5.2: Description of the extracted features

Feature Features computed Data

Dispersion

STD on number of interactions for all days call, message, c&m
STD on physical activity intensity for all days
(daytime, evening, night)

accelerometer data

STD on physical activity intensity for all weekdays
(daytime, evening, night)

accelerometer data

STD on physical activity intensity for all weekends
(daytime, evening, night)

accelerometer data

STD on physical activity magnitude for all days accelerometer data

Diversity

Entropy of total contacts for all days call, message, c&m
Entropy of total contacts for weekdays call, message, c&m
Entropy of contacts in sent box for all days call, message, c&m
Entropy of contacts in sent box for weekdays call, message, c&m

Regularity

Average RI of number of interactions for all days call, message, c&m
Average RI of physical activity intensity accelerometer data
Variance of RI for number of interactions
(daytime, evening, night)

call, message, c&m

Variance of RI for physical activity intensity
(daytime, evening, night)

accelerometer data

Basic

Total number of interactions for all days call, message, c&m
Total number of interactions for weekdays call, message, c&m
Average physical activity intensity for all days
(daytime, evening, night)

accelerometer data

Average physical activity intensity for weekdays
(daytime, evening, night)

accelerometer data

Average physical activity intensity for weekends
(daytime, evening, night)

accelerometer data

coefficient, which is widely applied to measure the correlation between variables in the field

of psychology, was calculated between the extracted activity features and Big Five personality

traits. The value of the Pearson correlation coefficient is in the range [-1, 1], where 1 represents

an exact positive linear correlation, 0 means no linear correlation and -1 indicates an exact

negative linear correlation. Table 5.3 shows the three features that were identified as the most

useful predictors of the Big Five personality scores for all, female and male participants, where

(+) represents a positive correlation and (−) represents a negative correlation. Table 3 also

shows the Pearson correlation coefficient for each useful feature. A discussion of these features

follows.

Extraversion. The regularity index of physical activity intensity on weekday evenings

was negatively correlated with the extraversion trait, which suggests that people with a higher
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Table 5.3: Most useful features to predict personality traits (total population)

Personality Top-3 Features
(−0.30) RI of physical activity intensity on weekday evenings

Extraversion (+0.26) Entropy of contacts (call & messages)
(−0.23) STD of physical activity intensity on weekday daytime
(−0.33) RI of physical activity intensity on weekday evenings

Agreeableness (+0.26) Average physical activity intensity on weekends
(+0.23) Average physical activity intensity on weekday evenings
(+0.44) Entropy of call & messages

Conscientiousness (+0.27) Total number of messages
(+0.18) Average physical activity intensity on weekday evenings
(+0.27) Entropy of contacts (calls)

Neuroticism (−0.24) STD of physical activity intensity on weekend daytime
(−0.21) Average physical activity intensity on all days
(−0.32) Total number of calls

Openness (+0.21) Average Inter-event time of calls
(+0.15) STD of physical activity intensity on weekday daytime

extraversion score do not follow similar patterns on weekday nights. The high entropy of

contacts means that they tend to interact with different people randomly, which is in accordance

with our experience in daily life.

Agreeableness. Similar to extraversion, people who scored high on agreeableness tended

to have a low regularity index for physical activity on weekday evenings, as they may be

socialising. They also tended to have greater physical activity intensity on weekends and

weekday evenings than those with a low agreeableness score. It is highly likely that a friendly

and compassionate female will have more outgoing calls than one who is less friendly and

compassionate.

Conscientiousness. We found that females and males with a high conscientiousness score

tended to have high entropy of contacts, which suggests that people who are more organised

and efficient tend to contact different people and do not usually connect with the same people.

In addition, organised people may have a high activity intensity on weekend evenings because

they plan their activities in advanced and are well prepared.

Neuroticism. We found that the regularity index of physical activity intensity on weekday

and weekend nights for females was positively correlated with neuroticism, which suggests that

females who are sensitive tend to participate in regular physical activity at night (after 12:00
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Table 5.4: Most useful features to predict personality traits (female and male population)

Personality Gender Top-3 Features
(−) Average physical activity intensity on weekend evening

Female (−) Average physical activity intensity on all days
(−) Average inter-event time (messages)

Extraversion (+) Average physical activity intensity on weekend evenings
Male (−) Average inter-event time (messages)

(−) RI of physical activity intensity on weekday evenings
(+) Number of outgoing calls

Female (−) RI of physical activity intensity on all days
(−) RI of physical activity intensity on weekday nights

Agreeableness (−) RI of physical activity intensity on weekdays
Male (−) RI of physical activity intensity on all days

(+) Total number of incoming calls
(+) RI of physical activity intensity on weekend daytime

Female (+) Entropy of contacts (calls)
(+) Average physical activity intensity on weekend evenings

Conscientiousness (+) Entropy of call & messages
Male (+) RI of physical activity intensity on weekend daytime

(−) STD of physical activity intensity on weekday daytime
(+) Entropy of contacts (calls)

Female (+) RI of physical activity intensity on weekend nights
(+) RI of physical activity intensity on weekday nights

Neuroticism (+) RI of physical activity intensity on weekend nights
Male (+) Entropy of call & messages

(+) RI of physical activity intensity on weekday nights
(−) Total number of calls

Female (−) RI of physical activity intensity on weekday evenings
(−) Average physical activity intensity on weekday nights

Openness (−) Total number of calls
Male (−) RI of physical activity intensity on weekday evenings

(+) STD of physical activity intensity on weekday evenings

am). Interestingly, in males, these same features were negatively correlated with neuroticism,

which suggests a difference between men and women.

Openness. We found the total number of calls was negatively correlated with the openness

trait. In addition, the average inter-event time for calls was positively correlated with the

openness score, i.e. individuals who have fewer phone calls and longer periods between each

call tend to be more inventive and curious.
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5.3.3 Predictive Analysis

Personality prediction is commonly regarded as a regression problem, and the scores range

from 1 (lowest) to 5 (highest) for each personality trait. Although the personality score can be

divided into several classes (e.g. high, medium and low) using certain thresholds, researchers

have shown that this is not good practice for determining people’s psychological characteristics.

Most classification models exhibit a low prediction accuracy of around 49%–63% [233]. Thus,

in this study, we used the regression model to predict personality traits.

The SVR method with a radial basis function kernel was chosen to predict the Big Five

personality scores. The SVR method has been applied in various fields and can handle high-

dimensional data and automatically model non-linear relationships. Since no noticeable dis-

similarities existed in the personality scores between the genders, and the key features were

different, we conducted the prediction by choosing the best regressors for the entire population

and for the males and females separately.

Baseline and Evaluation. Through the literature review, we found that most researchers

used the random chance or majority class selection method as the baseline for Big Five person-

ality prediction [120, 233]. However, in our research, we aim to improve prediction performance

by combining human physical activity features and traditional phone features. Therefore, it

did not make sense to compare our model with the random chance or majority class selection,

as it is difficult to predict personality traits from only one type of data. Personality predic-

tion using only phone activity data (call logs and message logs) and state-of-the-art metrics

(introduced in Section 3.2) was considered as the baseline model in the experiment.

For evaluation, we adopted the leave-one-out validation method because it usually has the

best performance when estimating a model from a small dataset. Using the leave-one-out

method, we calculated the average value for the MAE and mean squared error (MSE) for each

personality trait.

We validated our model with the MAE and MSE.

MAE =
1

n

n∑
i=1

|ytrue − ypred| (5.5)
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MSE =
1

n

n∑
i=1

(ytrue − ypred)2 (5.6)

where n represents the number of samples, ytrue is the true personality score and ypred is

the predictive value of the personality score. The MAE and MSE can describe the accuracy of

the predictions when compared with the ground truth of the personality score. The closer the

MAE and MSE are to 0, the more successful the model is at forecasting the personality traits.

Discussion. Table 5.5 displays the performance of our predictive model based on the

extracted features from call logs, message logs and raw accelerometer logs. With the observ-

able reduction in errors, our model has a better performance than the baseline model for all

personality traits. The predicted Big Five scores were highly correlated with the ground truth.

Based on the comparison of the MAE and MSE between our model and the baseline model,

it is interesting to note that conscientiousness, neuroticism and extraversion were the person-

ality traits that were predicted best by our predictive model. For the entire population, in

predicting conscientiousness, the model achieved MAE = 0.249, which is 0.148 (37.28%) lower

than the baseline model. For females, in predicting neuroticism, the model achieved MSE =

0.425, which is 0.129 (23.29%) lower than the baseline model, and the MSE for extraversion in

the female group was 0.128 (17.56%) lower than the baseline.

The predictive performance of the model for neuroticism was better in the gender-specific

model than in the population model, which may be due to different key features for males and

females. According to the explanations in Section 4.1, males and females with high neuroticism

scores may exhibit very different regularity of activity intensity at night. However, if we do not

consider the gender difference, the regularity of activity intensity was not a key feature in the

entire population. This phenomenon addresses the importance of building the gender-specific

predictive models for the neuroticism personality trait.

Our model was less effective at predicting the openness trait, which may result from physical

activity intensity not being strongly associated with the openness trait. In other words, in daily

life, it is also difficult to tell if someone is inventive or curious by considering their patterns of

activity intensity.

The current research had some limitations that need to be addressed in the future. First, the

sample size of our adopted dataset (n = 52) is relatively small, which may limit the performance



Inferring Response Behaviours with Mobile Computing 113

Table 5.5: Prediction performance for total/male/female participants

Group Big-5 Traits
MAE MSE

Baseline Proposed Method Baseline Proposed Method

Total

Extraversion 0.685 0.655 0.730 0.692
Agreeableness 0.444 0.399 0.298 0.262
Conscientiousness 0.397 0.249 0.249 0.240
Neuroticism 0.620 0.617 0.565 0.551
Openness 0.623 0.621 0.519 0.518

Female

Extraversion 0.624 0.576 0.734 0.605
Agreeableness 0.395 0.387 0.261 0.243
Conscientiousness 0.561 0.492 0.415 0.334
Neuroticism 0.612 0.532 0.554 0.425
Openness 0.709 0.709 0.625 0.625

Male

Extraversion 0.691 0.661 0.736 0.734
Agreeableness 0.424 0.419 0.270 0.268
Conscientiousness 0.407 0.393 0.293 0.275
Neuroticism 0.571 0.525 0.536 0.463
Openness 0.521 0.521 0.400 0.400

of the personality prediction. Further research is needed to explore a larger dataset to prove the

effectiveness of the physical activity features for personality prediction. Second, the evaluation

method used was relatively simple, and a more comprehensive evaluation method is needed

to allow for better comparison with the extant literature. Finally, the existence of bias in the

Big Five self-report data, such as sampling bias or response bias (e.g. misunderstanding the

measurement, social desirability or the need to ‘look good’ in the survey) may affect predictive

performance. Further work is needed to recognise and mitigate such bias.

5.4 Inferring Response Behaviours with Mobile Computing

5.4.1 Data Collection

5.4.1.1 Overview

We performed an in-the-wild study to gather user behaviours relating to smartphone notifi-

cation arrival and response time combined with contextual information and mood via smart-

phones, desktop computers and physiological signals. By advertising our study on our websites

and networks, we acquired 27 participants for the field study. The data collection began at the

end of January 2020 and continued for five weeks. The participants were asked, if possible, to
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install the apps Balance for Android and Balance for Desktop on their smartphones and desk-

top computers, respectively. Both apps facilitate continuous background sensing and ESMs

[276]. In addition, the participants were free to choose whether to have their physiological

signals measured via an E4 wristband. This part of the measurement was coordinated and

supervised by a contact person in the participant’s country of origin.

By installing the apps or wearing the E4 wristband, the participants were eligible to receive

information about the study and the data collected. Participants were made aware of the

privacy protection measures and their rights (e.g. the right to request to have their data

erased). Our privacy department and ethics committee approved the consent forms and data

collection procedures. Before the participants were given a short tutorial on using the apps

and handling the E4 wristbands, they were required to give their informed consent. The

study design called for contextual information to be recorded in the background without the

participants’ input, such as running apps, logging physical activities or recording locations.

As part of our mixed-method approach, participants were presented with questionnaires

every 90 min. We asked them about their mood, social role, interruptibility and the type of task

they were working on over the preceding 15 min. In addition, we implemented an event-based

approach to present users with the questionnaire, which was activated when the participant had

interacted with their phone for more than 10 min. These scheduled questionnaires were limited

to the time period 7 am to 10 pm, and there was a minimum 30 min between questionnaires.

In addition, a questionnaire was not sent if a participant still had a pending questionnaire.

Through these restrictions, we addressed the strain of responding to questionnaires to ensure

the quality of the data [277, 278]. All the approaches used are well known in ESM-based studies

to capture contextual information in-situ [277].

5.4.1.2 Participants

In our experiments, we focus on response time regarding smartphone notifications. Therefore,

we used data from 18 out of the 27 participants. The remaining 9 were removed because

there was insufficient data from them on the ESM questionnaires or technical problems that

affected the data collected from them. Our participants were between 25 and 41 years old.
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There were 18 Android, 11 Windows and 7 macOS users, and 15 participants installed both

the smartphone and the desktop app. The data were regularly transmitted to a server hosted

at our university and stored in an internal database. The upload and the data were encrypted.

The overall response rate (26.20%) was comparable to similar ESM-based studies in the field

of interruptibility [279]. A total of 3, 236 out of 12, 352 questionnaires were answered.

5.4.1.3 Collected data

Balance for Android. The balance for Android regularly uploaded encrypted recorded data

to the university server. The main focus of the design was low battery consumption, minimal

resource consumption and the seamless recording of data in the background. Using background

services, we kept track of interactions with apps and notifications, location updates and the

phone’s state (e.g. screen status and ringer modes). The phone’s last known location was pro-

cessed using a fused location provider1, which is an API that estimates location information

and manages Wi-Fi, mobile communication services and GPS while improving battery perfor-

mance and resource consumption. In addition, we gathered information on physical activities

by using the Google recognition API2. This API offers to report recognised physical activities

and optimise battery performance. The optimised battery performance is achieved by reducing

updates when the device is idle and using low-power sensors until activity is reported.

Balance for Windows & macOS. We decided to use a multiplatform app to cover

the broadest possible range of users, including users on the Windows and macOS operating

system. The access to foreground apps, information on their title bars, and keyboard and

mouse events were provided by the libraries pywin323 and pyobjc4 on Windows and macOS,

respectively. Both libraries are wrappers to low-level native operating system interfaces that

allow direct access to system information, peripheral devices and functions. Our apps also

relied on the psutil5 and subprocess326 libraries. We used the cross-platform library psutil to

1See: https://developers.google.com/location-context/fused-location-provider/
2See: https://developers.google.com/location-context/activity-recognition/
3See: https://pypi.org/project/pywin32/
4See: https://pypi.org/project/pyobjc/
5See: https://pypi.org/project/psutil/
6See: https://pypi.org/project/subprocess32/

https://developers.google.com/location-context/fused-location-provider/
https://developers.google.com/location-context/activity-recognition/
https://pypi.org/project/pywin32/
https://pypi.org/project/pyobjc/
https://pypi.org/project/psutil/
https://pypi.org/project/subprocess32/
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abstract information about system load and access to running processes. This included, among

other things, retrieving battery information, such as the remaining charge and power state.

With the subprocess32 library and native system calls, we parsed and scanned nearby Wi-Fi

networks.

Applications & Notifications. Accessibility services7 or notification listeners8 are com-

mon methods to gather data on apps and notifications on Android phones in the field of

interruption management [280, 281]. We used the accessibility service to gather the name and

the package identifier of the used app. This information is always recorded when the window

or its state changes. Another integrated service is the notification listener, which intercepts

the reception and removal of notifications and accesses their underlying representation. This

helped us obtain information, such as the time of arrival of the notification, the contact and

group names the notification came from and the length of the notification’s content. To extract

the contacts and group names, we added some apps to a white list to process their notifications

on the smartphone directly. As we were only interested in contacts, we only added popular

messaging apps, such as WhatsApp, Outlook, Twitter, Facebook, Microsoft Teams, Slack and

Telegram, to the list.

In order to infer the responsibility of the user and distinguish between the notifications, we

asked the users for their relationships to the senders. The users could choose family, friend,

work or none, and multiple choices were possible. As pseudonyms were used to transmit sender

information for data protection reasons, it was not possible to detect if a sender had a different

name in different messenger apps or was part of a group chat. Therefore, we could not avoid

sending multiple relationship questionnaires relating to one sender with different names. These

additional questionnaires did not negatively influence the response rate, and a certain minimum

number of correspondences with a sender was required to trigger the questionnaire.

Physiological data. During the data collection, participants were asked to wear Empatica

E4 9 wristband. The E4 wristband was first proposed by [70] and has multiple sensors: an EDA

sensor, ACC, PPG sensor and optical thermometer. Another term for EDA is GSR or SCR,

7See: https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
8See: https://developer.android.com/reference/android/service/notification/NotificationListenerService
9Empatica E4 wristband: https://www.empatica.com/en-int/research/e4/

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://www.empatica.com/en-int/research/e4/
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which measures the continuous variation in skin electrical characteristics at 4 Hz. The ACC

records the acceleration in three axes at 32 Hz in the range [-2 g, 2 g] and captures the physical

activity of users. The PPG data is optically obtained and can be used to measure BVP at 64

Hz. The HR and IBI are derived from BVP signals by the wristband. The optical thermometer

measures the peripheral ST at 4 Hz. The E4 wristband is lightweight and comfortable, making

it suitable for continuous and unobtrusive monitoring in this study. It has long been known

that emotions are related to the autonomic nervous system and are accompanied by changes in

physiological signals [282, 283]. By measuring a person’s physiological signals, changes can be

recognised, and emotions can be assigned. We conducted a correlation analysis between mood

and the features extracted from physiological signals.

ESM questionnaire. In this study, participants were asked to rate their mood over the

preceding hour. We used the ESM from Bradley and Lang [284] to uncover the arousal and

valence states. The arousal scale ranges from relaxed to excited, and the valence scale ranges

from positive to negative. In addition, we gathered the dominant social role the person had been

in for the preceding 15 min. Ashforth et al. [285] described a social role as a mental construct

that individuals maintain to organise their surroundings. Therefore, we investigated work

and private as domains, with their labelled social roles to characterise different behaviours.

In contrast to existing studies [286, 287], we decided not to be more granular regarding the

different roles, although family, work and social are reported as the most universal social

behaviours. The focus of our study was based on the work–life balance, and the distinction

between social and family seemed redundant, especially given the relationships that were

assigned to contacts. Finally, we asked the participants for whom they were interruptible, i.e.

contacts from the work or private domain, nobody or everybody (i.e. both domains).

5.4.2 Methodology

5.4.2.1 Pre-processing Approaches

At the beginning of the ML process, it is necessary to clean the data to eliminate noise and

create a homogeneous dataset. This preparation helps with data processing in the steps that

follow. One task during this stage was to standardise the app names across the platforms (i.e.
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Windows, macOS and Android), e.g. changing the name microsoft-powerpoint to PowerPoint

or removing system-specific endings. In addition, we parsed the Google Play Store websites

according to the mobile apps used by our participants to extract the relevant app categories.

The Google Recognition API returned all recognised physical activities and their corresponding

confidence ratings. To reduce the data, we chose the activities with the highest confidence

rating and forwarded the last known activity for all following events.

Upsampling was used for other data, such as the ringer mode, last known location and

screen status. The Plus Codes10 software package from Google was used to extract more

valuable place information and returned a code that gave us a description of a rectangular

area, including the given longitude and latitude information. The accuracy of the location

information generated by Plus Codes depends on the length of time it is used.

5.4.2.2 Extracted features

We prepared the data according to our needs for the regression model. It was decided that

the best method for this investigation was to calculate the features on the data before the

notification arrived. All extracted features are shown in Table 5.6.

Features extracted from Smartphone Data. We first examined the current context of

the user. For this purpose, we analysed the apps used in the 5–30 min preceding the arrival of

the notification. From this data, it was possible to deduced whether the user was interruptible

and, accordingly, whether they would react immediately to an incoming notification. We

discovered the top k smartphone apps by counting the frequency of appearance of the apps per

user. Assume user X1 has an app set A = {A1, A2, ..., AN}, where the apps are sorted by the

number of notifications received from the app in the training dataset, i.e. app A1 received the

most notifications and An received the fewest notifications. In this research, we only studied

the top k apps where k = 10. We will explain the k in detail in Section 5.4.3.

There were five main indicators that were considered important in the process of finding

the opportune moments to send notifications to the user to minimise notification response

times. First, the sender–recipient relationship was closely related to the notification response

10See: https://maps.google.com/pluscodes/

https://maps.google.com/pluscodes/


Inferring Response Behaviours with Mobile Computing 119

Table 5.6: Extracted features by device. Data marked with (∗) were manually reported

Feature Description Contextual Informa-
tion

Smartphone Data

topk x unique Top k applications in the last x ∈ 5, 10, 15, 20, 25, 30 minutes. Foreground application
phone apps X Number of used smartphone applications in the last x ∈

5, 10, 15, 20, 25, 30 minutes, extracted from the name and the
package identifier of the current foreground application

Foreground application

physical activity X Number of unique physical activities reported by the Google
Recognition API

Physical activity

place top x, place other Top three (x ∈ 1, 2, 3) frequently visited places and all other
places. Category of the location according to Google Geocod-
ing API.

Location (Android)

screen on, screen off,
screen

The current state of the screen. Screen state

notification length Length of the text within the notification. Notification content
Monday, Tuesday,
Wednesday, Thurs-
day, Friday, Saturday,
Sunday

Day of the week. Notification arrival time

morning, afternoon,
evening, midnight

Time of the day: morning (from 6 a.m. to 12 p.m.), afternoon
(from 12 p.m. to6 p.m.), evening(from 6 p.m. to 0 a.m.), and
midnight (from 0 a.m. to 6 a.m.)

Notification arrival time

is weekend Binary value describing, whether it is weekend or not. Notification arrival time
loc 8, loc 10 Longitude and latitude information of the device as Plus

Code
Location

relation x The participants relationship to the extracted contact and/or
group. Participants could choose between family, friend,
work, and none. Multiple selections are possible (e.g., work
and friend).

Relationship∗

contact Hashed contact and/or group name extracted from notifica-
tion titles

Contact∗

Experience Sampling Method Data

valence, arousal The affective state of the last 60 minutes Mood∗
private, work, both,
none

Interruptibility preferences of the last 15 minutes. Interruptibility∗

private, work, both Social role of the person in the last 15 minutes. Social role∗

Physiological Signals

µ, σ2, σ Mean, Variance, Standard Deviation EDA, SCR, SCL, BVP,
HR, IBI, ST

min, max Min and max value EDA, SCL, SCR, BVP,
HR, ST

rms Root mean square HR
fslope The absolute value of the slope of the linear regression line EDA, SCL, HR, ST
f√slope The square root of the absolute values of the slope of the

linear regression line
EDA, SCL, HR, ST

f1intercept The square root of the absolute value of the intercept of the
linear regression line

EDA, SCL, HR, ST

f2intercept The third power of the square root of the absolute value of
the intercept of the linear regression line

EDA, SCL, HR, ST

nni 50/20, pnni 50/20,
nni 20, pnni 20

Number,and percentage of interval differences of successive
RR-intervals greater than 50ms and 20 ms, respectively

IBI

vlsf, lf, hf, lf hf ratio Power in HRV in the very low/low/high frequency. Power of
lf/hf

IBI

sdsd, range nni The standard deviation of differences between adjacent RR-
intervals. Difference between the maximum and minimum
nn interval

IBI

cvsd, cvnni Coefficient of variation, of successive differences (cvsd), equal
to the ratio of rmssd / sdnn divided by mean nni.

IBI

triangular index The HRV triangular index measurement is the integral of the
density distribution divided by the maximum of the density
distribution.

IBI
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rate [288, 262]. Mehrotra et al. reported that the users’ perception of the interruption depends

on the sender of a notification, and chat notifications from family members have the highest

acceptance rates. We considered both the length of the notification and the sender of the

message. If the contact was known, we noted the relationship of the contact to the user.

Second, notification response time was closely linked with whether the user was active on their

smartphone at the time the notification was delivered. To gather this information, we queried

whether the screen was on or not.

Third, breakpoints in physical activities have been proven to mark opportune moments for

interruptions. Okoshi et al. [289, 290, 291] examined breakpoints in physical activities and

app usage and found that notifications delivered at breakpoints, denoted as transitions between

apps and physical activities, could lower individuals’ mental burden. Ho and Intille [246] also

suggested that notifications delivered during activity transitions produced more favourable

outcomes than those delivered randomly. As described earlier, we used the Android Google

API to record the current physical activities of the participants. The number of different

activities detected was also used as a feature in the first stage classification.

Fourth, the location of the participants was considered important in determining their

notification response time. We used Plus Codes to represent the current location of the user.

The most frequently visited locations for each participant were set as features. For this purpose,

we first determined the three locations that each participant visited most frequently during

the measurement process, and these locations represented their top three locations. All other

Plus Codes were assigned to the category ‘other’. The location of the user before receiving the

notification was noted by setting one of the top three locations or the category ‘other’ to true.

Fifth, the time of day was considered important in determining users’ notification response

times. Several previous studies have investigated the relationship between times of the day

and notification responses [291, 258, 259]. Okoshi et al. and Saikia et al. found that sending

notifications at opportune times greatly reduced response times. Therefore, we noted the day

and the time of day to represent the time a notification was received. As previously described,

we split the day into four parts, i.e. midnight (from 12 am to 6 am), morning (from 6 am to

12 pm), afternoon (from 12 pm to 6 pm) and evening (from 6 pm to 12 am) and the week into
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two parts, i.e. week days and weekends.

Features from ESM Data. In addition to the features already mentioned, we used

the ESM questionnaire data, which described the users’ moods, interruptibility and current

social role. Mood was measured on two scales: valence and arousal. These scales represent

different types of feelings on a scale of 1–5: from unhappy to happy and from calm to excited,

respectively. We used the features that contained contextual information about interruptibility

and the social role. We applied one-hot encoding to represent this nominal data.

Features for Physiological Signals. We decided to extract statistical features on all

physiological signals that are commonly used for mood recognition. As suggested by Heinisch

et al. [292], we added features based on the linear regression, as these features had been

shown to be robust influencing factors of physical activity. The EDA signal can be divided

into two components, the SCR and the SCL. The SCR contains high-frequency components

of the signal, reflecting rapid changes in the signal in response to a stimulus. In contrast, the

SCL contains low-frequency components of the EDA, representing the long-term or baseline

conductance. We used the Python tool suggested by Greco et al. [129] to split the EDA signal

into these two components.

Table 5.7: Notification and app information for 18 participants

Min Max Median Mean

Number of apps 18 47 26 30

Number of notifications 363 6213 1914 2362

Percentage of notifications
sent by top 10 apps

84.67% 99.57% 94.88% 94.30%

Percentage of notifications
sent by top 5 apps

65.56% 97.90% 84.17% 83.33%
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5.4.3 Understanding the Mood, Usage Behaviours and Notification

Response Time of Participants

5.4.3.1 Understanding Notification Response Times for Different Participants

In total, we have received 3, 236 ESM responses and 42, 270 notifications from 18 participants

during the data collection. We explore the notification response time from top-k apps where

k = 10 because on average, the top ten apps sent 94.30% of the notifications (out of 2,362

notifications), while the other apps only sent 5.70% of the notifications (see Table 5.7). If we

only study the top five apps, we would miss 16.67% of the notifications, which is almost three

times the number of missed notifications from studying the top ten apps. For instance, Figure

5.3 displays the number of notifications across all the apps for one participant P10 during the

data collection. We find that P10 received 96.04% notifications from top ten apps and 86.16%

from top five apps. Therefore, in this research, we did not consider the apps receiving only

a few notifications (k > 10) because the relatively small data set would not offer a robust

representation of the notification response times for modelling. In real-world scenarios, k can

be set to any values based on the categories of apps being explored.
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Figure 5.3: The number of notifications across all the apps for participant P10
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Figure 5.4: Cumulative distribution of notification response times from the top 10 apps for all
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To understand the notification response time for all participants, we show the cumulative

distribution of notification response times from top ten apps for each participant in Figure 5.4.

It is obvious that the response time to most notifications is short, but the response time of

some notifications is long. Specifically, out of 40,290 notifications received by 18 participants,

the response time was within five minutes for 54.32% of the notifications, within one hour for

75.86% of the notifications, and within one day for 93.90% of the notifications. However, if we

look at the response times for different participants, we find that each participant has their own

patterns and trends for responding to notifications. For instance, participant P5 responded to

49.37% of their notifications within five minutes and 86.96% within one hour, while participant

P11 responded to notifications much more slowly, only responding to 18.46% within five minutes

and 32.36% within one hour. Hence, studying the participant-wise notification response time

is necessary, as the general model may be inaccurate due to individual differences.

5.4.3.2 App Categories and Response Time

Figure 5.5a displays the number of notifications across the app categories, showing that the

communication apps receive much more notifications than all the other app categories. In

total, communication apps receive six times more notifications than the app category that

was ranked second (i.e. Productivity apps). Figure 5.5b shows the average response times for
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Figure 5.5: Information for different app categories

each app category (black vertical line indicates the error bar, with a 95% confidence interval).

Since 93.90% of the notifications from all participants are responded to in one day, we focus

on analysing those notifications and have removed the notifications with a response time of

more than one day. Messages that have not been responded to more than 24 hours may be

due to various reasons, such as the user forgot or has already responded on other platforms.

We believe that it is more meaningful to focus on the notifications that users reply in a timely

manner, and the small number of notifications unanswered for a long time will be explored

in our future research. We find that the response times varied significantly between the app

categories. If we aim to predict response time across all categories, the prediction performance

would be unreliable due to the extreme variations in the number of notifications and the

average notification response time between app categories. Therefore, in this research, we

focus on predicting users’ response behaviours for communication apps.

5.4.3.3 Impact of Applications on Notification Response Times

We already know that each participant has their own patterns for responding to notifications.

However, we also investigate whether each participant responds to different apps in different

ways. Here we explore the influence of apps on notification response times. Figure 5.6 shows
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Figure 5.7: Distribution of arousal and valence for 18 participants

the cumulative distribution of the notification response times for five popular apps for par-

ticipant P10. It clearly shows that even for the same participant, the notification response

times vary from app to app. For example, this participant usually responded quickly to what-

sapp, gmail and telegram but much more slowly to threema. Specifically, within five minutes,

this participant responded to 83.53% of notifications from whatsapp but 53.33% from threema.

Therefore, it is necessary to consider the impact of the apps to meaningfully model the notifi-

cation response times.

5.4.3.4 The Mood of Users and Notification Response time

We calculate the overall distribution of mood in Figure 5.7, where 1 to 5 indicates a low to

high value of valence/arousal. Generally, participants usually reported positive valence (mean

= 3.44) and low arousal (mean = 2.77), meaning that they were relaxed, clam, and comfortable
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Figure 5.9: Mood of participants over different social roles and days of the week

[185] most of the time. We also explore how the mood is related to factors such as daytime and

interruptibility. As shown in Figure 5.8a and Figure 5.8b, participants usually experienced the

highest valence (mean = 3.56) and lowest arousal (mean = 2.58) in the evening (6pm - 12am).

In contrast, they usually experienced the lowest valence (mean = 3.28) and highest arousal

(mean = 2.97) in the midnight (12am-6am). We also found that when the participants did not

want to be interrupted by either work or private affairs (i.e. interruptibility was ‘none’), they

were usually experiencing lowest valence (mean = 3.21) and highest arousal(mean = 3.03).

Interestingly, when the participants experienced positive mood (high valence), they were more

likely to be amenable to interruptions relating to private, or private and work (i.e. both) affairs.

In general, the participants experienced varying mood with different levels of interruptiblity at

different times.

We also investigate how the mood changed based on social roles and the day of the week

(see Figure 5.9a and Figure 5.9b). We found that participants usually experienced high valence
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(mean = 3.55) and low arousal (mean = 2.67) when they were busy with private issues and

tended to experience low valence (mean = 3.31) and high arousal (mean = 2.88) when they were

at work. Our participants had the highest valence in the private role on Friday (mean = 3.66)

and Sunday (mean = 3.66) and the lowest valence values (mean = 3.25) at work on Saturday.

Saturday and Sunday were also different in the arousal scale, as the social roles ‘both’ (mean

= 3.08) and ‘work’ (mean = 3.22) had the highest values, respectively. Interestingly enough,

being in the role of private or both made our participants feel the lowest arousal (mean = 2.5)

on Sunday.

5.4.4 Experiment

As introduced in Section 5.4.1.2, we focus on predicting the response times of 18 participants

who installed the smartphone app. In this research, we built the regression model for predict-

ing the users’ notification response times. First, we introduce the experimental setting and

prediction pipeline. Then we show the overall results of the predictions and the impact of

the study on the mood-related features. Finally, we investigate how individual differences and

categories of apps influence response times.

5.4.4.1 Prediction Pipeline

We have adopted the regression model for predicting notification response times. The predic-

tion pipeline is described below.

Regression models. In the prediction model, we adopted several commonly used regres-

sion models, such as Standard Linear Regression [151], SVR [293], Gradient Booting Regression

(GBR), Random Forest Regression [294] and Bayesian Ridge Regression [295]. Linear regres-

sion is one of the most widely used regression models. The support-vector machine in regression

problems is usually known as SVR, which is one of the most commonly used regression models.

The GBR model is a powerful prediction model, and it is an ensemble method combining a

set of weak predictors to achieve reliable and accurate predictions. Random Forest Regression

uses the idea of a random forest, and it can estimate the importance of various features in

a model. Bayesian Ridge Regression conducts linear regression using probability distributors
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rather than point estimates, which provides a natural mechanism to create predictive models

when data are insufficient or poorly distributed.

Validation. Cross-validation is a common practice for training and testing prediction

models and is used to estimate the unbiased generalisation performance of models. However,

cross-validation may lead to the optimistically biased evaluation of prediction performance

when the same cross-validation process is chosen to both tune and select the model. Similar

to previous ubiquitous computational studies [30, 6], we adopted nested cross-validation [148],

which performs two iterations over the data. The outer loop is used to evaluate the performance

of the regressors, and the inner loop is used for optimisation of hyper-parameters and feature

selection. After performing this cross-validation, we then applied k-fold cross-validation (k =

5) on both loops for each participant. In the outer loop, once the training set and testing

set were defined, we standardised features by removing the mean and scaling the data to unit

variance. In the inner loop, we optimised the hyper-parameters using a grid search. We then

selected features according to the K highest scores based on f-regression [215] (f-value between

the label/feature for regression tasks). The top eight features (K = 8) were selected as the

input features for each regression model because we found that this resulted in the lowest

prediction error.

Baselines. In human-centred research, it is usually difficult to compare the prediction

results with state-of-art baselines. The main reason is that the types of data collected, the

demographics of participants and the natural environment vary widely across studies, it is not

fair or applicable to compare the prediction performance between different studies. Addition-

ally, to our knowledge, we have not found any research that attempts to predict the notification

response time for mobile users. As a result, similar to previous human-centred studies [30, 120],

we have adopted simple baselines to compare the modelling performance. In particular, we

compare the proposed models with two baselines: Mean baseline and Median baseline. As

one of the most widely used simple baselines to compare with other regressors, Mean baseline

always predicts the mean of the training set. Median baseline always predicts the median of

the training set. The reason why we choose Median baseline is that the distribution of noti-

fication response time is highly skewed (see Figure 5.4), whereas the Median baseline is most
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informative for skewed distributions or distributions with outliers.

Evaluation Metrics. To evaluate the performance of notification response time, the

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics are applied

for evaluating the prediction performance. The MAE = 1
n

∑n
i=1 |ytrue − ypred| and RMSE

= 1
n

∑n
i=1(ytrue − ypred)2, where n indicates the number of samples, ytrue means the actual

notification response time and ypred means the predicted response time. The MAE and MSE

describe the goodness of predictions compared with the ground truth of notification response

time. The closer the MAE and MSE are to 0, the better the performance of the prediction

model.

5.4.4.2 Prediction Result with Mobile Data

As discussed in Section 5.4.3, the notification response behaviours were very different between

the participants (see Figure 5.4). Therefore, in the experiment, we built participant-wise

regression models instead of a general model for all participants. Figure 5.10a and Figure 5.10b

show the MAE and RMSE results across different regressors for each participant. We found

that the regression models achieved much better predictive performance than both baselines

for most participants (i.e. P2, P3, P9, P12, P17 and P18). For example, for participant P9, the

Bayesian regression model had the best predictive performance (MAE = 0.6505 and RMSE =

0.8779), with MAE = 0.1828 (21.94%) and RMSE = 0.2101 (19.31%) lower than the median

baseline model.

However, for some particular participants (e.g. P1 and P13), only a small number of

regressors achieved a lower MAE and RMSE than the baseline models. The possible reasons

why some regressors did not work well on a small number of participants are twofold: (1)

The notification response behaviours of these participants were more random and changeable

than others, which makes them difficult to predict. These individual differences in mobile usage

behaviours have been discussed in prior research [296]. (2) These participants had very different

notification response behaviours when using different apps, which is difficult to represent in

one regression model. However, it was not practical to build a predictive model for each app

due to the limited number of notifications.
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Figure 5.10: Prediction results across different regressors for each participant

Next, we calculated the overall predictive performance for all participants by averaging

the MAE and RMSE values from the participant-wise models. Table 5.8 shows the overall

predictive result for all participants. It shows that all regression models had better predictive

performance than the two baseline models in terms of MAE and RMSE, demonstrating the

models’ potential for predicting notification response times for ordinary people. The Bayesian

model achieved the best predictive performance of all the regression models and obtained MAE

= 0.7764 and RMSE = 1.0527, which was 0.078 (9.10%) and 0.093 (8.09%) lower than the mean

baseline MAE and RMSE, respectively. Although the overall predictive performance does not

sounds particularly good, the predictive performance was very high for most individuals (see

Figure 5.10).

Figure 5.11 shows the importance of each feature for each participant, which was calculated

using the f-regression score in the scikit-learn python package. Higher values indicate more
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Table 5.8: Predictive results with different regressors using mobile data

Bayesian. Linear. SVR. GBR. R. Forest. Mean Baseline Median Baseline

MAE 0.7764 0.7797 0.7770 0.7797 0.8014 0.8541 0.8544
RMSE 1.0527 1.0533 1.0601 1.066 1.0798 1.1454 1.1441

is_
we

ek
en

d
lo

c_
8

lo
c_

10
sc

re
en

m
or

ni
ng

af
te

rn
oo

n
ev

en
in

g
m

id
ni

gh
t

pl
ac

e_
ot

he
r

pl
ac

e_
to

p1
pl

ac
e_

to
p2

pl
ac

e_
to

p3
M

on
da

y
Tu

es
da

y
W

ed
ne

sd
ay

Th
ur

sd
ay

Fr
id

ay
Sa

tu
rd

ay
Su

nd
ay

co
nt

ac
t

re
la

tio
n_

fa
m

ily
re

la
tio

n_
fri

en
d

re
la

tio
n_

kn
ow

n
re

la
tio

n_
wo

rk
re

la
tio

n_
no

ne
se

nd
er

no
tif

ica
tio

n_
le

ng
th

ph
on

e_
ap

ps
_3

0
ph

on
e_

ap
ps

_2
5

ph
on

e_
ap

ps
_2

0
ph

on
e_

ap
ps

_1
5

ph
on

e_
ap

ps
_1

0
ph

on
e_

ap
ps

_0
5

ph
ys

ica
l_a

ct
iv

ity
_3

0
ph

ys
ica

l_a
ct

iv
ity

_2
5

ph
ys

ica
l_a

ct
iv

ity
_2

0
ph

ys
ica

l_a
ct

iv
ity

_1
5

ph
ys

ica
l_a

ct
iv

ity
_1

0
ph

ys
ica

l_a
ct

iv
ity

_0
5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Pa
rti

cip
an

t i
d

5

10

15

20

25

Figure 5.11: Feature importance for each participant in the prediction

important features. Understanding the importance of a feature is significant in helping us

better understand a problem and can lead to better predictive performance through feature

selection. In Figure 5.11, we can see obvious individual differences in feature importance for

predicting notification response times. For example, the response time for some participants

(e.g. P3, P5 and P15) was significantly affected by location, while some participants’ (e.g. P12

and P13) were not affected by location. Many participants’ response times were influenced by

the time of the day (i.e. weekends or week days), screen status, relationship with senders or

the number of apps used in the past 5, 10, 15, 20, 25 or 30 minutes. The above phenomena are

in line with our daily experience and may be due to the various personalities or usage habits

of mobile users [12, 260].

5.4.4.3 Impact of Mood-related Features

We also explored the impact of mood-related features on predicting notification response times.

The mood-related features were divided into two groups: ESM features and E4 features. For
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ESM features, we mainly focused on the perceived arousal and valence, based on ESM ques-

tionnaires. For E4 features, we mainly focused on the features extracted from physiological

signals (i.e. EDA, HRV and ACC) from the E4 wristbands.

ESM features. We built regression models with two different sets of features: (1) mobile

features and ESM features and (2) mobile features only. Since we only had a limited number

of ESM responses, we removed the data without corresponding arousal and valence values.

To achieve a fair comparison, we used the exact same rows of data (8,408 data instances) in

each of the above two models. The results of the experiment showed that all the regression

models using the second set of features had higher MAE and RMSE values than those using

the first set of features, where the MAE/RMSE of baseline models are exactly the same. The

findings indicated that the ESM features improved the predictive performance of the model

for notification response times.

E4 features. To study the impact of the E4 features, we built regression models with

two different sets of features: (1) mobile features and E4 features and (2) mobile features

only. After removing the NaN values in the whole dataset, 1,491 rows of data remained, which

were used to build the regression models using the two sets of features, as mentioned above.

The results of the experiment showed that most of the regression models (except Bayesian

regression) achieved better predictive performance with the first set of features, i.e. mobile

features and E4 features. A possible reason may be the small number of E4 data instances,

e.g. participant P11 only had 19 rows of data, and P9 only had 27 rows of data, which makes

it difficult to make meaningful predictions.

5.4.5 Implications and Limitations

This research addressed the relationship between mood and interruptibility and investigated the

possibility of automatically predicting notification response times and actions based on users’

moods. Our research also provides opportunities for the future design of intelligent notification

management systems for mobile or desktop devices, which could benefit the wellbeing and

productivity of users. In our research, we analysed the impact of mood, as measured by ESM

questionnaires, and physiological data, as measured by E4 wristbands, on notification response



Inferring Response Behaviours with Mobile Computing 133

times. We found that affective data can help to improve regression models to assist in the

handling of smartphone notifications.

ESM data. One limitation of our study is that some data, such as mood, was gathered

using an ESM questionnaire pushed either every 90 minutes or after the user had been using

their smartphone for 10 min. This kind of questionnaire must be seen as an interruption

itself. In addition, the questionnaire popped up on the smartphone as a notification, which

may have caused the participants to interact with their smartphones more often than they

would normally have. However, this method of data collection is very common in the field

of interruption management, and as the data were used to develop the individual regression

models, we believe that these initial results are valuable for further research. We are aware

that a follow-up in-the-wild study is needed to validate the models developed.

Mood. Another limitation is the use of the ESM questionnaire to capture the participant’s

mood. It is important to note that many people struggle to identify or name their moods

correctly [283], and the reliability of self-report data can be influenced by various response

biases [40]. To compensate for this weakness, we added physiological signals to the ESM data,

which also conveys information about human affective states. Even though these are not free

of external influences (e.g. external temperature and physical movement), they form a basis

for the research in combination with the ESM data.

Data Distribution. There was minimal diversity in terms of age and gender, and there

were only a small number of participants. In particular, the number of participants wearing

the E4 wristband needs to be increased in future research to reduce the potential for bias. In

addition, the data were very unbalanced because of the number of different apps used by each

participant and the number of notifications. There was significant variation in how the subjects

behaved and the apps that they used. Some users interacted frequently with many apps, while

some users interacted very frequently with a few apps and rarely with many other apps. These

factors mainly influenced the results of the regression analysis, making it almost impossible to

create a generalised model. After pre-processing, we also recognised that for some participants

the quantity of data recorded was very low.
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5.5 Conclusion

In this research, we first demonstrated that it is possible to combine human physical activity

intensity data with traditional phone activity data to estimate the Big Five personality traits.

We proposed a set of important metrics based on dispersion, diversity, regularity, etc. and

found some interesting associations between human activity patterns and personality traits.

We used SVR to predict participants’ personality scores. The results of the experiment showed

that our predictive model was highly correlated with the ground truth and outperformed the

baseline model. We also found that the performance of the predictive model differed between

females and males, with an observable reduction in errors when the predictive model was

split by gender (when compared with the model for all participants). These results present a

significant step in passive human personality prediction using smartphone activity data.

Understanding the notification response behaviours of users is of vital importance to devel-

oping the next generation of mobile management systems to improve users’ overall productivity

and wellbeing. In this research, we predicted notification response times by understanding peo-

ple’s mobile usage behaviours, moods and physiological patterns. We conducted an in-the-wild

study of more than 18 participants with mobile devices and wearables over a five-week period.

We developed multiple regression models to predict the notification response times for each

participant. The experimental results showed that the proposed model achieved greater pre-

dictive performance than all the baseline models. We found that the use of both the mood

data from the ESM questionnaires and physiological signals (e.g. EDA and HRV) improved

the predictive ability of the models significantly. In addition, we identified the most significant

features affecting the accurate prediction of notification response times for each participant,

and we discussed various factors affecting the predictive performance, such as individual dif-

ferences between users and categories of apps. The research showed that notification response

times can be predicted accurately using smartphone data (e.g. location and app usage), and

the predictive performance can be significantly improved by utilising mood-related information

from ESM data or physiological signals. This result is a significant step toward achieving an

attention management system that combines human wellbeing and behaviours.



Chapter 6

Modelling Thermal Comfort with

Limited Labelled Data in Smart

Buildings

Previously in Chapter 3, 4 and 5, we utilized heterogeneous sensing data to predict human

behaviours and mental states. However, it is usually difficult to obtain sufficient labelled

data in human-based studies for accurate data-driven modelling. In relation to RQ-5, this

chapter aggregates behaviour (i.e., thermal comfort) from environmental sensing with limited

annotations by transferring knowledge from multiple locations to another domain. We present

a transfer learning-based multilayer perceptron model from the same climate zone (TL-MLP-

C*) for accurate thermal comfort prediction. Extensive experimental results on the ASHRAE

RP-884, Scales Project and Medium US Office datasets show that the performance of the

proposed TL-MLP-C* exceeds the performance of state-of-the-art methods in accuracy and

F1-score.

6.1 Introduction

Recently, Internet of Things (IoT) devices have been widely used in urban environments. In

addition, sensors have become the backbones of smart cities that enable spatial and situational

135
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awareness of real-time dynamic phenomena, e.g., pedestrian movement [297], parking events

[298], and energy consumption [299, 300]. As one of the most important parts of cities, buildings

account for approximately 40% of the global energy usage and 60% of the worldwide electricity

usage [301]. Large proportions of these usages are contributed by buildings’ HVAC systems

[302]. The main goal of the HVAC system is to maintain the indoor occupant comfort at

minimal energy usage. To achieve overall satisfaction with an indoor environment, thermal

comfort is considered to be the most influential factor compared with visual and acoustic

comfort [303].

Thermal comfort is the state of mind that expresses satisfaction with the thermal environ-

ment [304]. Thermal discomfort not only affects occupant productivity, work performance and

engagement [30, 15], but it also has a negative influence on lifelong health. Hence, it is impor-

tant to maintain a thermally comfortable environment for the well-being of occupants while

minimizing buildings’ energy usage. A crucial step towards this goal is to create an accurate

model for thermal comfort. The Predicted Mean Vote (PMV) model proposed by Fanger et al.

[305] developed with principles of human heat balance and adopted by the ASHRAE Standard

55, is one of the most prevalent models. It relates the thermal comfort scale with six different

factors (see Figure 6.1).

However, some researchers revealed the discrepancy between the predicted mean vote and

occupant-reported thermal sensation votes [306]. This discrepancy is likely because a variety of

parameters such as time factors (e.g., hour, day, and season) [307, 308], personal information

(e.g., heart rate, age, and gender) [309], environmental factors (e.g., colour, light, and outdoor

climates) [310], culture (e.g., dress code and economic status) [311], short- and long-term

thermal exposure [308], etc. may affect thermal comfort. Therefore, a data-driven method is

a better choice than the traditional PMV model since more parameters could be utilised to

improve the performance of thermal comfort prediction.

Some researchers have applied data-driven machine learning techniques for thermal comfort

prediction for a specified group of people. However, it is usually difficult to obtain sufficient

labelled data, which limits the performance of data-driven models. Recently, various thermal

comfort studies have been conducted worldwide; and several databases, including databases
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Figure 6.1: Six factors affecting thermal comfort (PMV model)

covering multiple cities and climate zones, are currently available online (see Section 6.3).

Since the sensor data inferred from different cities may have very divergent patterns caused

by building materials, construction requirements and climate changes, previous research has

mainly focused on investigating how people living in specific cities react to their thermal

environment (e.g., the hot-arid climate in Kalgoorlie-Boulder, Australia [312] and the humid

subtropical climate in Brisbane Australia [313]).

We aim to explore whether we can utilise sensor data from multiple cities to benefit a

target building. We hypothesize that the performance of thermal comfort modelling can be

boosted by conducting transfer learning using data from multiple cities. Therefore, we wish to

answer the following research questions: Can we predict occupants’ thermal comfort accurately

by learning from multiple buildings in the same climate zone when we do not have enough data?

If so, which features contribute the most to effective thermal comfort transfer learning?

In this chapter, we present the transfer learning-based multilayer perceptron (TL-MLP)

model and transfer learning-based multilayer perceptron from the same climate zone (TL-MLP-

C*) model for predicting occupants’ thermal sensation with insufficient labelled data. ASHRAE

RP-884 [305] and the Scales Project [314] are chosen as the source datasets, and the Medium

US Office [315] is used as the target dataset. Extensive experiments on these three public

databases show that the proposed thermal comfort models outperform the popular knowledge-

driven and data-driven models. To summarize, the contributions are as follows:

• To the best of our knowledge, we are the first to transfer the knowledge from similar
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thermal environments (climate zones) to a target building for effective thermal comfort

modelling. We propose the TL-MLP and TL-MLP-C* thermal comfort models and

confirm that the thermal comfort sensor data from multiple cities in the same climate

zone can benefit the small thermal comfort dataset of a target building in another city,

with insufficient training data.

• Extensive experimental results show that the proposed TL-MLP and TL-MLP-C* models

outperform the popular knowledge-driven and data-driven models for thermal comfort

prediction and can be implemented in buildings without adequate thermal comfort la-

belled data.

• We identify the significant feature sets for effective thermal comfort transfer learning. We

also find that the combination of age, gender, outdoor environmental features and the

six factors from the PMV model can lead to the best prediction performance for transfer

learning-based thermal comfort modelling.

6.2 Related Work

First, we list the previous literature for traditional thermal comfort modelling methods and

transfer learning applications. Then, we discuss the current gaps and identify the advantages

of this work.

6.2.1 Traditional Thermal Comfort Modelling Methods

The PMV model developed by Fanger et al. [305] and adaptive model developed by De Dear et

al. [313] are the most famous knowledge-driven thermal comfort models. The adaptive model

is based on the idea that occupant can adapt to different temperatures at different times and

that outdoor weather affects indoor comfort. Occupants can achieve their comfort through

personal adjustments such as clothing changes or window adjustments [316]. Clear et al. [317]

explored how adaptive thermal comfort could be supported by new ubiquitous computing

technologies. They noted that IoT sensing technologies can help build a more sustainable
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environment where people are more active in maintaining and pursuing their thermal comfort,

which is less energy-intensive and less tightly controlled.

In recent years, data-driven thermal comfort modelling has become increasingly more pop-

ular and huge efforts have been made to apply machine learning to thermal comfort modelling

[37, 38, 309, 318, 319, 320, 321]. Ran et al. [37] used rotation forests to predict occupants’

thermal comfort using thermographic imaging information. Similarly, Ghahramani et al. [38]

used a hidden Markov model (HMM) based method to predict thermal comfort using the in-

frared thermography of faces. Chaudhuri et al. [309] established a random forest-based model

for different genders using physiological signals (e.g., skin conductance and blood pressure).

However, all the thermal comfort models mentioned above require the installation of additional

devices (individual thermal cameras, smart eyeglasses, and physiological sensors) and may lead

to privacy concerns.

The performance of traditional machine learning algorithms on thermal comfort prediction

has been discussed in [318]. Researchers compared nine widely used machine learning algo-

rithms for thermal sensation prediction using the ASHRAE Comfort Database II. They found

that ML-based thermal sensation prediction models generally have higher accuracy than tra-

ditional PMV models and that the random forest has the best performance compared to other

ML algorithms.

As the non-traditional machine learning algorithms, artificial neural networks have been in-

creasingly used in thermal comfort modelling. Ferreira et al. [319] controlled an HVAC system

to achieve the desired thermal comfort level and energy savings. They applied several neural

network models to calculate the PMV index for model-based thermal comfort prediction. Hu

et al. [320] implemented a black-box MLP neural network for thermal comfort modelling,

which obtained better prediction performance than the PMV model and traditional white-box

machine learning models. Compared to most previous research using a coarse-grained neural

network architecture (link input attributes and thermal comfort score directly), Zhang et al.

[321] used the MLP neural network to model the relationship between controlling building

operations and thermal comfort factors. Their proposed fine-grained DNN approach for ther-

mal comfort modelling outperforms the coarse-grained modelling and other popular machine
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learning algorithms.

6.2.2 Transfer Learning Applications

Although great contributions have been made to improve the prediction accuracy of thermal

comfort through various machine learning techniques, there is still a main bottleneck for data-

driven thermal comfort modelling - the accessibility of sufficient thermal comfort data. Transfer

learning allows researchers to learn an accurate model using only a tiny amount of new data

and a large amount of data from a previous task [34].

Transfer learning has been applied to many real-world applications involving Figures/video

classification, natural language processing (NLP), recommendation systems, etc. For instance,

transfer learning has been used for children’s Automatic Speech Recognition (ASR) task [322].

Researchers learn from adult models to child models through a Deep Neural Network (DNN)

framework. They investigated the transfer learning techniques between adult and child ASR

systems in acoustic variability (layers near the input) and pronunciation variability (layers near

the output), updated both the top-most and bottom-most layers and kept the rest of the layers

fixed.

Some existing work has focused on transfer learning using sensor data. Wang et al. [323]

proposed a transfer learning based-framework for cross-domain activity recognition. First, they

used the majority voting technique to obtain the pseudo label of the target domain. Intraclass

knowledge transfer was interactively performed to convert two domains into the same feature

subspace. Then, the labels of the target domain can be ignored by the second annotation. Ye

et al. [324] learned human activity labels by leveraging annotations across multiple datasets

with the same feature space, even though the datasets may have different sensing deployments,

sensing technologies and different users.

Recently, a transfer active learning framework was proposed to predict thermal comfort

[36]. They considered thermal comfort prediction as inductive transfer learning where labelled

data are available in both source and target domains but users do not have access to all labelled

data in the target domain. They used the parameters transferred from the source domain to

the target domain. The biggest disadvantage of their method is that they assume the feature
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spaces in both domains must be the same, which is not applicable in daily life as there may be

unique useful features in the target dataset.

Similarly, Hu et al. [35] adopted transfer learning for thermal comfort modelling and

assumed that the feature space of the source domain is a subset of that of the target domain.

They connected the classifiers from the source domain and target domain and then built a new

classifier to obtain knowledge from the source domain; however, they did not explain why the

network structure works well. Besides, they trained the thermal comfort model for a lab study

and learned knowledge from the data from buildings all over the world in the ASHRAE RP-

884 dataset, but they did not consider the differences in the thermal environments in different

climate zones.

Overall, there are several advantages of our work: (1) We are the first to transfer the

knowledge from similar thermal environments (climate zones) to the target building for effective

thermal comfort modelling. Most previous research has focused on building a thermal comfort

model for one target building [320, 321, 37, 38, 309, 318, 319]. Although a few researchers

[35] have started to use transfer learning for building thermal comfort models, their target

datasets are collected from laboratory studies and do not consider the influences of different

climate zones. (2) Unlike some research that uses data collected from laboratory studies [37,

38, 309, 35], we build thermal comfort models using data from field studies in both the target

and source domains, which is much more meaningful in real-world scenarios. (3) Compared

with some research utilising additional devices (e.g., thermal cameras in [37], eyeglasses in [38],

and wristbands in [35]), our research is easier and cheaper to conduct, and better protects the

privacy of occupants.

6.3 Data Sets Introduction

6.3.1 Overview

ASHRAE RP-884 Database [304] is one of the most popular public databases for human

thermal comfort research [325, 326]. It was initially collected to develop De Dear’s adaptive

model, involving more than 25,000 observations collected from 52 studies and 26 cities over
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Table 6.1: Information for source dataset and target dataset

Dataset ASHRAE RP-884 The Scales Project Medium US Office

Instances 25,623 8225 2,497
Participants Unknown (48% M, 52% F) 8225 (53% M, 46% F) 24 (33% M, 67% F)
Indoor AT Range (C) 6.2 - 42.7 13.2 - 34.2 17.9 - 27.8
Indoor RH Range (%) 2.0 - 97.8 18.0 - 82.4 15.7 - 72.4
Indoor AV Range (m/s) 0.01 - 1.71 0.00 - 0.70 0.02 - 0.19
MR Range (Met) 0.64 - 6.82 N/A 1.00 - 6.80
CL Range (Clo) 0.04 - 2.29 N/A 0.21 - 1.73

Figure 6.2: Locations of different studies in ASHRAE RP-884 database, The Scales Project
database and Medium US Office dataset

different climate zones all over the world. We adopt this public database as one of the source

datasets in our research.

The Scales Project Dataset [314] released in 2019 and it contains thermal comfort responses

from 57 cities in 30 countries for 8225 participants. This dataset aims at exploring participants’

thermal comfort, thermal sensation, thermal acceptances and to investigate the validity of

assumptions regarding the interpretation of responses from the survey. This public dataset is

used as one of the source datasets in the research.

Medium US Office Dataset [315] is a popular dataset used by many thermal comfort studies

[327, 321]. It collected data from 24 participants (16 females and 8 males) in the Friends

Center Office building in Philadelphia city, USA. Longitudinal thermal comfort surveys were

distributed online three times daily (morning, mid-day and afternoon) for a continuous 2-week



Data Sets Introduction 143

2 1 0 1 2
Thermal Sensation

0.0
0.1
0.2
0.3
0.4
0.5

Fr
eq

ue
nc

y

(a) ASHRAE RP-884

0.0

0.1

0.2

0.3

0.4

Thermal Sensation

Fr
eq

ue
nc

y

2 1 0 1 2

(b) The Scales Project

2 1 0 1 2
0.0
0.1
0.2
0.3
0.4
0.5

Fr
eq

ue
nc

y

Thermal Sensation
(c) Medium US Office

Figure 6.3: Distribution of thermal sensation over different datasets

period in each of the four project seasons between July 2012 and August 2013. Data types

varied from daily surveys to sensor data including but not limited to the indoor air temperature,

air velocity, relative humidity, CO2 concentration and illuminance. This public dataset is used

as the target dataset in the research.

The locations of all cities with data used in the study are displayed in Figure 6.2. The

red points represent the 26 cities in the ASHRAE RP-884 database, the blue points indicate

the 57 cities in the Scales Project dataset, and the green point indicates Philadelphia in the

Medium US Office dataset. In this chapter, we aim to learn the knowledge from data in cities

indicated by red points and blue points to benefit one building in Philadelphia (green point).

Table 6.1 shows the basic information for the three datasets. The first two datasets have

different building types (HVAC, naturally ventilated and mixed ventilated) while there is only

one HVAC building in the Medium US Office dataset. Since the ASHRAE and Scales datasets

include different climate zones all over the world, they have wider indoor air temperature ranges

than the Friends Center building in the Medium US Office (17.9◦C-27.8◦C). Different from

the first two datasets, the Medium US Office dataset has much smaller groups of participants.

Besides, the ranges of the indoor relative humidity (Indoor RH), indoor air velocity (Indoor

AV), metabolic rate (MR), and clothing level (Clo) in the Medium US Office dataset are smaller

than those in the ASHRAE dataset.
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6.3.2 Preliminary Analytics

Figure 6.3 shows the distribution of thermal sensation for the ASHRAE RP-884 dataset, the

Scales Project and the Medium US Office dataset. Since the numbers of instances of the

sensation scale for +3 (Hot) and -3 (cold) are far less than those of the other instances in

both data sets, we merged +3 (hot) and +2 (warm) into one class, and -3 (cold) and -2 (cool)

into one class. In the office environment, indoor environmental factors such as temperature

are generally maintained at a relatively comfortable level (17.9◦C-27.8◦C in the Medium US

dataset), and people can also choose to adjust their clothing level and behaviour (e.g., open

the heater vents and have hot drinks) if they are too cold or too hot.

Although the regression model is effective in many time-series problems [298, 12], the

classification method still dominates the thermal comfort area. Therefore, in this chapter, we

choose classifiers rather than regressors for effective thermal comfort prediction. Besides, based

on the previous discussion, thermal sensation scales are classified into 5 categories (i.e., cold

or cool, slightly cool, neutral, slightly warm, hot or warm).

The above three datasets have similar thermal sensation distributions, and occupants feel

neutral towards the thermal environment most of the time. We can observe that there are more

responses for feeling slightly warm or cool than feeling warm/cool or hot/cold, which accords

with our thermal comfort feelings in daily life. Meanwhile, the thermal sensation distributions

in the ASHRAE dataset and the Scales Project dataset are more uniform than the distribution
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Figure 6.4: Distribution of the indoor air temperature over different domains
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Figure 6.5: Boxplots of thermal sensation and the indoor temperature

of the Medium US Office dataset. This is because the ASHRAE dataset and the Scales Project

dataset consist of a variety of data from different climate zones all over the world while the

Medium US Office dataset includes data from only one building.

Indoor air temperature is one of the most significant factors affecting occupants’ thermal

feelings. Figure 6.4 shows the distribution of the indoor air temperature for the three datasets.

Most temperature values range from 22◦C-24◦C. However, there are also some differences

between these three distributions. The ASHRAE and the Scales Project datasets have higher

indoor air temperatures because some thermal sensation responses are from hot climate areas.

In constrast, in the Medium US Office dataset, the indoor temperature distribution seems to

be centred at approximately 20◦C to 27◦C.

From Figure 6.5, we can see the relationship between the indoor air temperature and

thermal sensation scale. Usually, a higher indoor air temperature indicates a higher thermal

sensation scale for all three datasets. Interestingly, in the Medium US Office dataset, the

average indoor air temperature for feeling cold or cool is slightly higher than that for feeling

slightly cool. This phenomenon may be due to there being too few subjects (24 participants

in total) in the Medium US Office dataset. Additionally, the other factors such as the relative

humidity, age, gender, and outdoor weather will affect the thermal sensation. This is the reason
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why we use as many features as possible to build a more accurate and robust thermal comfort

prediction model.

From the above analysis, there are observable differences between the ASHRAE, Scales

Project and Medium US Office datasets. One of the reasons is that buildings in these three

datasets are located in various climate zones, where climate variability can lead to a different

working environment, occupant cognition and behaviour, therefore affecting occupants’ thermal

sensation in different buildings. Considering that the three datasets share many similarities in

occupant thermal comfort and that the number of instances in the target dataset is very limited,

we explore occupants’ thermal comfort by learning from multiple buildings in the same climate

zone with similar climate conditions. We will then introduce the proposed thermal comfort

modelling in Section 6.4.4.

6.4 Methodology

6.4.1 Problem Definition

To learn sensor data from multiple datasets for thermal comfort modelling, some notations

need to be defined. Firstly, we give the definition of a ‘task’ and a ‘domain’. A domain D

can be represented as D = {X , P (X)}, which contains two parts: the feature space X and the

marginal probability distribution P (X), where X = {x1, x2, ..., xn} ∈ X . The task T can be

represented as T = {y, f(·)}, which contains two components: the label space y and a target

prediction function f(·). f(·) can not be observed but can be learnt from the training data,

which could also be considered as a conditional function P (y|x).

In the context of traditional machine learning, the common assumption is that the training

and test data share exactly the same feature space and data distribution [328]. However, once

the new task T arrives and its data distribution P (X) is different from the previous task, the

new model must be rebuilt from the beginning using the current data. This method requires

extra effort and is very expensive in most cases. Compared with traditional machine learning

methods, transfer learning can tolerate differences in data distribution and utilise knowledge

from other sources to target tasks.
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Table 6.2: Selected features in the Medium US Office dataset

Category Data Source Feature Name Description Units

Indoor HOBO Datalogger (15 mins)

Indoor AT Indoor temperature ◦C
Indoor RH Indoor relative humidity %
Indoor AV Indoor air velocity m/s
Indoor AMRT Indoor radiant temperature ◦C

Outdoor Weather Analytics (15 mins)
Outdoor AT Outdoor temperature ◦C
Outdoor RH Outdoor humidity %

Personal
Daily Survey (3 times/day)

CL Clothing insulation clo
MR Metabolic rate Met

Background Survey (once)
Age Participants’ age Years
Gender Participants’ gender N/A

In this chapter, we transfer the knowledge from the source domain (RP-884 and the Scales

Project datasets) to benefit thermal comfort prediction in the target domain (Medium US

Office dataset). Although both domains have different features, they share several common

features such as the indoor air temperature, indoor relative humidity, indoor air velocity, indoor

mean radiant temperature, clothing level, metabolic rate, and occupants’ age and gender.

Therefore, predicting thermal comfort falls under transductive transfer learning [329], which

can be formally defined as follows: given a source domain Ds and the corresponding learning

task Ts, a target domain Dt and the corresponding learning task Tt, we aim to improve the

performance of the prediction function f(·)t in Tt by discovering the knowledge from Ds and

Ts, where Ds 6= Dt and Ts = Tt.

Figure 6.6 shows the thermal comfort transfer learning system in which we could use the

transfer learning method to learn knowledge from the source datasets and benefit the target

dataset in a specified city.

6.4.2 Feature Selection

Human thermal sensation is influenced by a variety of factors such as time factors [307], personal

information [309], environmental changes [310], and culture [311]. In this chapter, several

features are chosen for thermal comfort transfer learning based on the following criteria: (1)

the features were commonly studied in previous thermal comfort research and (2) the features

are easy calculate or collect by using passive sensing or self-reported responses. In summation,
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we divide the features into three broad categories: indoor environmental features, outdoor

environmental features and personal features. Table 6.2 displays the selected features in the

Medium US Office dataset.

Indoor Environmental Features. The indoor environment affects occupants’ thermal

comfort directly, and we adopt the following basic indoor environmental features derived from

Fanger’s PMV model [305] for thermal comfort prediction: the air temperature, mean radiant

temperature, air velocity and relative humidity. The air temperature is the average temperature

of the air surrounding the occupant at a location and time. The radiant temperature indicates

the radiant heat transferred from a surface, and the mean radiant temperature is affected by the

emissivity and temperature of the surrounding surfaces, viewing angles, etc. The air velocity

is the average speed of air with respect to the direction and time. The relative humidity is the

ratio of the amount of water vapour in the air to the amount of water vapour that the air can

hold at a specified pressure and temperature.

Outdoor Environmental Features. Outdoor weather conditions can have physiological

effects on individuals thermal perception and clothing preference in different seasons [306, 330].

For instance, in summer people tend to choose lightweight clothing, which will influence their

indoor thermal comfort. The most popular measurements of the outdoor environment include

the outdoor air temperature and outdoor humidity, which will also be adopted in this research.

Thermal Sensation 
Prediction

Thermal 
Comfort Data

Thermal Sensation 
Prediction

Thermal 
Comfort Data

Knowledge

Source

Target

Figure 6.6: Thermal comfort transfer learning system
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Personal Features. Studying personal features is crucial for effective thermal comfort

modelling because thermal sensation is a subjective measurement and different individuals

perceive the same environment differently. In this chapter, we selected the following personal

features: clothing insulation, metabolic rate, age and gender. Clothing insulation has a major

impact on the thermal comfort level because it affects heat loss and thus the heat balance.

Previous research shows the relationship between age and thermal sensation [331, 311]. Besides,

Sami et al. [332] found a significant gender difference in thermal comfort: females tend to prefer

a higher room temperature than males and feel both uncomfortably hot and uncomfortably

cold more often than males. Hence, gender and age are considered to be the features for

thermal comfort modelling.

The features in a source domain can be considered as a subset in the target domain.

The ASHRAE dataset shares eight features with the Medium US Office dataset while the

Scales Project dataset only shares six features with the target dataset. Although there are

various other features in these three datasets such as occupant behaviour data (e.g., adjusting

heaters/curtains/ thermostats) and background survey data (e.g., acceptable temperature), we

simplify the thermal comfort prediction and therefore do not show the other features.

6.4.3 Imbalance Class Distribution

As the thermal sensation scale has 5-point values, we regard thermal comfort prediction as a

classification task. Fig. 6.3 shows the distributions of the ASHRAE RP-884, Scales Project

and Medium US Office datasets. It is clear that the three distributions are imbalanced, and

the number of thermal sensation instances for -1 (cool) to 1 (warm) far exceeds the number of

other instances. To train a fair classifier, we must address this class imbalance issue in thermal

comfort data. Take the binary classification as an example. If class M is 95% and class N is

5% in the dataset, we can simply reach an accuracy of 95% by predicting class M each time,

which provides a useless classifier for our purpose. In this chapter, we assume that the survey

responses are ‘correct’. Although there may be some biases (e.g., rating bias, anchoring bias,

and social desirability bias) in self-reported data, we will not discuss them in this chapter.

To address an imbalanced dataset, oversampling and undersampling are efficient techniques
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to adjust the class distribution of the data set. Under-sampling (e.g., clustering, edited nearest

neighbours [333] and Tomek links [334]) can balance the dataset by reducing the size of the

majority class. However, undersampling methods are usually used when we have sufficient

data. Oversampling (e.g., the synthetic minority oversampling technique [335] and adaptive

synthetic sampling [336]) aims to balance the dataset by increasing the number of minority

classes, which can be applied when the data are insufficient.

Generative Adversarial Networks (GANs) have been successfully applied in various fields

to learn the probability distribution of a dataset and synthesize samples from the distribution

[337, 338]. A GAN uses a generator G to capture the underlying data distribution of a dataset

and a discriminator D to estimate the probability that a given sample comes from the original

dataset rather than being created by G. Some techniques such as the TableGAN [339] and

TabularGAN [340] have been proposed to handle the imbalance of tabular data. In particular,

Quintana et al. [341] used the TabularGAN to synthesize a small thermal comfort dataset.

They found that when the amount of synthesized data is no larger than the amount of real

data, the thermal comfort dataset can achieve similar performance to the real samples.

In the thermal comfort classification problem, labelled thermal comfort responses are usu-

ally few. Therefore, in this chapter, we synthesize survey responses to handle the imbalance

of thermal sensation classes. The TabularGAN 1 is used in this research to generate tabu-

lar data based on the generative adversarial network. It can learn each column’s marginal

distribution by minimizing the KL divergence, which is more suitable for thermal comfort

classification problems compared with other methods such as the TableGAN, edited nearest

neighbours [333], SMOTE [335], etc. The reason why we did not adopt the TableGAN is that

it optimizes the prediction accuracy on synthetic data by minimizing the cross entropy loss

while TabularGAN focuses more on the marginal distribution. The TabularGAN learns each

column’s marginal distribution by minimizing the KL divergence, which is more suitable for

the thermal comfort classification problem.

1Python package for TabularGAN:https://pypi.org/project/tgan/

https://pypi.org/project/tgan/


Methodology 151

6.4.4 Thermal Comfort Modelling

Traditional algorithms for thermal comfort modelling is isolated and occurs purely based on

specific buildings in the same climate zone. No thermal comfort knowledge is retained that

can be transferred from one thermal comfort model to another. Recently, the transfer learning

technique has been intensively studied in different applications [36, 322]. It aims to leverage

knowledge from source tasks and then apply them to the target task. There are various transfer

learning techniques that can be roughly grouped into three categories: inductive transfer learn-

ing, unsupervised transfer learning and transductive transfer learning [342]. Inductive transfer

learning [343] aims to improve performance on the current task after having learned a different

but related skill or concept on a previous task. Unsupervised transfer learning [344] focuses

on solving unsupervised learning tasks in the target domain such as dimensionality reduction,

clustering, and density. Transductive transfer learning aims to utilize the knowledge from the

source domain to improve the performance of the prediction task in the target domain.

Transductive transfer learning can exploit the different levels of information captured from

different layers in the neural network. Generally, layers close to the input data capture specific

characteristics in the dataset while deeper layers capture information more relevant to the

tasks (e.g., object types in image recognition and thermal sensation labels in thermal comfort

prediction). The Medium US Office dataset, as described in Section 6.3.1, differs in cities

and climate zones from the ASHRAE dataset and the Scales Project dataset. In different

climate zones, there are various factors possibly contributing to thermal comfort, e.g., climate

characteristics and occupants’ perceptions and tolerance. This motivates us to investigate

transfer learning between the ASHRAE/Scales Project datasets and Medium US office dataset

in climate variability, which is close to the layers near the input.

We assume that climate variability affects the lower-level neural network only. Therefore,

these layers need to be adapted to better represent the Friends Center office building in the

target dataset. This can be regarded as retaining the knowledge of higher-level mappings from

the source dataset. Hence, we retain the last hidden layer of the models on the ASHRAE and

Scales Project datasets as shown in Figure 6.7. Then, the thermal comfort neural network

will be retrained with the Medium US Office dataset until convergence to find the optimal
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Figure 6.7: The architecture for thermal comfort transfer learning

parameters for the lower hidden layers.

6.5 Experiment

In this section, we conduct experiments on the proposed thermal comfort transfer learning

models and compare the performance with the state-of-the-art techniques and different config-

urations. We address the two research questions: Can we predict occupants’ thermal comfort

accurately by learning from multiple buildings in the same climate zone when we do not have

enough data? If so, which features contribute the most to effective thermal comfort transfer

learning? Specifically, we explore how the numbers of hidden layers and sample size of the

training set in the target building affect thermal comfort transfer learning performance.

6.5.1 Experimental Setup

In our research, the source domain (ASHRAE RP-884 dataset and the Scales Project dataset)

and the target domain (Medium US Office dataset) share some common features, which in-

clude four indoor environmental variables (air temperature, indoor relative humidity, mean

radiant temperature, and indoor air velocity), two environmental variables (air temperature

and humidity) and two personal variables (age and gender). In addition, the ASHRAE RP-
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884 and Medium US Office datasets share two other personal variables (clothing insulation

and metabolic rate). The shared features make it possible to transfer knowledge to the target

domain from the source domain.

Preprocessing. As discussed in Section 6.3.2, we first merge the minority classes and

reclassify the thermal sensation into five categories. Then, we standardize the features by

scaling them to unity variance for better classification performance. Considering that the

thermal sensation classes are extremely imbalanced, in order to train a meaningful classifier,

the TabularGAN [340] technique is applied for synthesizing the samples in all the classes except

the majority class in the training set. Here, 50% of the samples in each class were synthesized

while ensuring that the number of samples per category did not exceed the number of samples

in the majority class.

Taking the Medium US Office dataset as an example, there are 2497 instances in the original

dataset. After removing the null values and categorizing the thermal sensation responses, there

were 1090 ‘neutral’ responses, 462 ‘slightly cool’ responses, 408 ‘slightly warm’ responses, 154

‘cool or cold’ responses and 131 ‘warm or hot’ responses. After synthesizing the data using

the TabularGAN, there were 981 ‘neutral’ responses, 624 ‘slightly cool’ responses, 551 ‘slightly

warm’ responses, 208 ‘cool or cold’ responses and 177 ‘warm or hot’ responses in the training

set (90% of the dataset).

Architecture. In this research, we choose the multilayer perception (MLP) neural network

as the classifier for the source domain and target domain. Each neural network consists of two

hidden layers with 64 neurons in each layer. The Relu function is used as the activation function

in hidden layers. Then, the softmax function is applied to the output layer as the activation

function. We train the classifier with the categorical cross-entropy loss function and the Adam

optimizer with learning rate = 0.001. The batch size is set to 200 and the max epoch has been

set to 500. Besides, the fixed random seed is chosen for dataset shuffling and training.

Evaluation. Similar to previous thermal comfort studies [320, 37, 309, 38], the accuracy

and weighted F1-score are chosen as the performance metrics. Accuracy reflects the overall

performance of the thermal comfort model. Since our priority goal is to correctly predict the

thermal sensation for as many occupants as possible to achieve overall thermal comfort/energy
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savings in the building, accuracy is used as the main evaluation metric in this problem. We also

adopt the weighted F1-score as the best metric to assess the accuracy of capturing performance

across imbalanced classes. The F1-score considers both false positives and false negatives to

strike a balance between the precision and recall. The ‘weighted-average’ calculates the metrics

for each class and finds their average weighted by the number of true instances for each class.

Compared with the ‘macro-average’ method, the ‘weighted average’ considers class imbalances.

The weighted F1-score is helpful for evaluating thermal sensation classifiers as it considers all

imbalanced classes. That is, it evaluates the classifiers for different user groups with different

thermal sensation levels instead of all occupants globally.

Baselines. For the baseline, three different categories of baselines are selected for compar-

ison with our proposed method: random guessing, the PMV model and multiple traditional

machine learning models. Random guessing generates the sample from the distribution of ther-

mal comfort and regards it as a predicted value. Similar random baselines have been widely

used in previous thermal comfort studies such as [345, 35]. The PMV model is the most preva-

lent thermal comfort model worldwide. In the experiment, we will only use the four indoor

environmental variables, the metabolic rate and clothing insulation to calculate the PMV score

ps according to the formula in [346] for the target dataset. Then, the thermal sensation class

C(ps) is calculated using Equation 6.1.

C(ps) =



−2, if ps ≤ −1.5

−1, if − 1.5 < ps ≤ −0.5

0, if − 0.5 < ps ≤ 0.5

1, if 0.5 < ps ≤ 1.5

2, if ps ≥ 1.5

(6.1)

For the multiple traditional machine learning models, we choose K-nearest Neighbors [347],

Naive Bayes [348], Support Vector Machine (with Linear, RBF and Polynomial kernel) [349],

Decision Tree [350], Random Forest [294], AdaBoost [351] as baselines. Naive Bayes [348]

from Bayes family methods is chosen due to its fast speed and working well with high di-

mensions. Support Vector Machine [349] technique is efficient for handling high dimensional

spaces. Different from algorithms like SVM, AdaBoost [351] is fast, simple and easy to use



Experiment 155

Figure 6.8: ‘Köppen World Map High Resolution’ by Peel, M. C. et al. [1], licenced under
Creative Commons Attribution-Share Alike 3.0 Unported [2], Desaturated from original

with less need for tuning parameters. K-nearest Neighbors [347] is a simple method storing all

available instances and classifying data instances according to a similarity measure, which has

been widely used in the pattern recognition and statistical prediction area. Random Forest

[294] is an ensemble learning method for classification operated by building multiple decision

trees. It can cope with high-dimensional features and judge the feature importance.

Compared to the PMV model using six factors for thermal comfort prediction, the multiple

machine learning algorithms use ten features as input features (see Table 6.2). Besides, all

three of the above baselines build a thermal comfort classification model using the Medium US

dataset.

Cross-validation. We apply thek-fold cross-validation [352] (k = 10) method for effective

thermal comfort classification. The advantage of 10-fold cross-validation is that it estimates the

unbiased generalization performance of the thermal comfort prediction model. In the experi-

ment, the data from the target domain (US Medium Office dataset) are randomly partitioned

into 10 folds, each fold serves as the testing data iteratively, and the remaining 9 folds are used

as the training data. The cross-validation process is repeated 10 times, and the prediction

results (accuracy and weighted F1-score) are averaged to produce a single estimation.
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Climate zone divisions. We adopt the Köppen climate classification updated by Peel et

al. [1], which is one of the most widely used climate classification systems in the world. As

shown in Figure 6.8, the Köppen climate classification divides climates into five main climate

zones: A (tropical), B (dry), C (temperate), D (continental), and E (polar). Each large climate

zone is then divided into several small subzones based on temperature patterns and seasonal

precipitation. All specific climates are assigned a main group of climate zones (the first letter).

In our study, the target domain (Philadelphia in the US) belongs to the ’temperate’ climate

zone. In the source domain, the Scales Project dataset includes 8225 instances from 57 cities

in total, and 5411 instances from 32 cities (e.g., Yokohama, Sydney, and Cambridge) were

located in the ’temperate’ climate zone. The ASHRAE RP-884 database consists of 25623

thermal comfort responses from 26 cities in total, where 12 cities (e.g., Berkeley, Athens, and

Chester) [353] are situated in the same climate zone as Philadelphia.

We run the proposed TL-MLP model and TL-MLP-C* models with the ASHRAE database

and the Scales Project database as the source domain and the Medium US Office dataset as the

target domain. In particular, for both proposed models, we only use the data from buildings

with HVAC systems in all datasets. For the TL-MLPC* model, we use the data from the

buildings with HVAC systems in the same climate zone as the source domain and the Friends

Center building as the target domain.

Table 6.3: Classification of the ASHRAE RP-884 database for HVAC buildings according to
climates

Climate Number of cities Instances

Tropical
5 (Townsville, Jakarta, Darwin,
Bankok, and Singapore)

3826

Dry
6 (Honolulu, Kalgoorlie-Boulder,
Karachi, Quettar, Multan, and Peshawar)

3290

Temperate

12 (Brisbane, Melbourne, Athens,
South Wales, Sydney, San Francisco,
Merseyside, San Ramon, Antioch,
Auburn, Oxford, and Saidu)

3512

Continental 3 (Ottawa, Montreal, and Grand Rapids) 2808

All 26 13436
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Table 6.4: Prediction performance for different algorithms on the target dataset

Algorithm Accuracy (%) F1-score (%)

PMV 33.35 (2.40) 32.45 (2.35)
Random 27.23 (1.30) 29.30 (1.40)

KNN 41.43 (2.95) 41.93 (2.85)
SVM (Linear) 29.44 (5.19) 30.92 (4.84)
SVM (RBF) 37.93 (3.86) 40.91 (4.04)
SVM (Poly) 34.02 (4.59) 37.66 (5.15)
Decision Tree 43.33 (4.94) 43.34 (4.87)
Random Forest 51.41 (3.03) 52.93 (3.69)
Naive Bayes 40.43 (4.10) 39.40 (3.97)
AdaBoost 42.94 (3.22) 42.41 (3.94)
MLP 50.35 (3.81) 50.67 (4.51)

TL-MLP 50.76 (4.31) 53.60 (4.43)
TL-MLP-C* 54.50 (4.16) 55.12 (4.14)

Besides, we classify the HVAC buildings in the ASHRAE RP-884 database into different

climates (see Table 6.3). The table shows that in the ASHRAE RP-884 database, there are

13436 observations from buildings with HVAC systems in total and 3512 such observations in

the ’temperate’ climate zone. Since the Scales Project dataset recorded the Köppen climate

and HVAC status information during the data collection, after calculation, there were 4621

observations from buildings with HVAC systems in total and 3245 observations collected from

buildings with HVAC systems located in the ’temperate’ climate zone.

6.5.2 Overall Prediction Result

Table 6.4 shows the performance of different thermal comfort modelling algorithms. We use all

ten features described in Section 6.4.2 on most algorithms except for the PMV model. From

Table 6.4, we can see that the PMV model performs better than only the random baseline

and SVM classifiers (kernel = ‘Linear’) in accuracy. The F1-score of the linear SVM is still

higher than that of the PMV model. This may be because we use more features in machine

learning classifiers while the PMV model only has six factors. We will discuss the prediction

performance with different feature sets later in Section 6.5.3.

Table 6.4 shows that the random forest algorithm performs the best on all metrics compared



Experiment 158

with the PMV model, random baseline and other data-driven models including eight traditional

machine learning classifiers. This may be because the random forest is usually regarded as the

best classification algorithm for small datasets [35] and has been proven to have the highest

prediction accuracy for thermal sensation [318].

Most importantly, we find that the TL-MLP has a higher F1-score for thermal comfort

classification than other machine learning methods without using transfer learning. Although

the TL-MLP has better prediction performance than the MLP on all metrics, the prediction

accuracy of the TL-MLP is slightly lower than that of the random forest. The potential reason

is that the TL-MLP transfers knowledge from all HVAC buildings in the world regardless of the

different climate zones, leading to lower prediction accuracy than that of the random forest.

Excitingly, the TL-MLP-C* model works better than all of the state-of-the-art algorithms on

both metrics (accuracy and F1-score), indicating the effectiveness of the proposed approach.

To further investigate how the proposed TL-MLP-C* improves the prediction performance

compared to the MLP, we show the confusion matrixes for the MLP and TL-MLP-C* in

Figure 6.9. The figure shows that the MLP model can predict label 0 (neutral) with the

highest probability of 0.61, which is similar to the 0.62 of the TL-MLP-C*. However, it still

has high chances to misclassify labels 1 (slightly warm) to 0 (neutral). Instead, the transfer

learning-based thermal comfort model TL-MLP-C* can predict labels more accurately than

the traditional MLP model, especially for the minority classes (-2, -1, 1). It can predict 67% of

the label -2 (cool or cold) instances and 40% of the label 1 (slightly warm) instances correctly

and achieves an average accuracy of 54.50% for all classes from -2 to 2.

In summary, our proposed transfer learning-based models (TL-MLP and TL-MLP-C*)

achieve remarkable performance for thermal comfort prediction compared with the random

baseline, traditional PMV model and data-driven algorithms without transfer learning. In

particular, the TL-MLP-C* model outperforms the state-of-the-art algorithms on both metrics

(accuracy and F1-score). Furthermore, the improved prediction performance of the TL-MLP-

C* is significant compared to that of the standard MLP model.
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Figure 6.9: Confusion matrix on the target domain

6.5.3 Impact of Different Feature Combinations

We will now explore how accurately the proposed TL-MLP and TL-MLP-C* models work when

only a set of features is available. Usually, indoor sensors are inexpensive and unobtrusive and

have been installed in many buildings with HVAC systems. However, some features may be

unavailable due to factors such as privacy, costs, etc. For instance, occupants may not be

willing to report their age, which reflects their metabolism level and influence their thermal

comfort feelings. Besides, it is somewhat inconvenient to install outdoor weather stations

outside a building to capture outdoor environmental changes (e.g., outdoor air temperature and

humidity) more accurately than the official weather stations used for local weather forecasting.

Hence, in the experiment, we will divide our features into 3 different sets Xa,Xb, and Xc

based on PMV factors, personal factors and outdoor environmental factors, respectively; and

then compare the different sets and explore which features contribute the most to effective

thermal comfort transfer learning. The feature sets are as follows:

• Xa: Six basic factors introduced in the PMV model: indoor air temperature, indoor air

velocity, indoor relative humidity, indoor radiant temperature, clothing insulation and

metabolic rate. This is the most common feature set for thermal comfort modelling used

in previous studies [35].

• Xb: Six factors from Xa and two personal factors: age and gender. Personal factors such

as gender and age can be easily collected through background surveys.
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Table 6.5: Prediction performance for different feature sets on the target dataset

Sets Algorithm Accuracy (%) F1-score (%)

Xa

PMV 33.35 32.45
Random Forest 34.77 34.92
MLP 33.18 34.06
TL-MLP 33.53 35.90
TL-MLP-C* 33.98 39.32

Xb
Random Forest 43.43 43.18
MLP 42.96 45.31
TL-MLP 44.10 45.88
TL-MLP-C* 47.10 51.15

Xc
Random Forest 51.41 52.93
MLP 50.35 50.67
TL-MLP 50.76 53.60
TL-MLP-C* 54.50 55.12

• Xc: Eight factors from Xb and two outdoor environmental factors including the outdoor

air temperature and outdoor relative humidity. The above two outdoor environmental

features need to be accessed from the outdoor weather station near the target building.

For different feature sets, we use the same oversampling methods and fixed random seeds in

neural network training. Table 6.5 shows the prediction performance for different feature sets

on the target dataset. The random forest and MLP algorithms are chosen for comparison with

the TL-MLP and TL-MLP-C* algorithms due to their relatively high performance, as shown

in Table 6.4. For the Xa,Xb, and Xc feature sets, we can observe that the performance of the

TL-MLP and TL-MLP-C* models increases as the number of features increases. In addition,

the TL-MLP-C* model has the highest accuracy and F1-score in each feature set.

For feature set Xa, the PMV model works slightly better than the MLP model in accuracy

but worse in F1-score. The random forest algorithm achieves the best performance in accuracy

while TL-MLP-C* achieves the highest F1-score. With transfer learning from source datasets,

the TL-MLP and TL-MLP-C* have similar prediction accuracies to the traditional PMV model.

This shows that the advantages of the proposed TL-MLP and TL-MLP-C* models cannot be

fully utilized when the number of features is limited.

In feature set Xb, all data-driven models achieve better prediction performance than using
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Figure 6.10: Prediction performance with different number of hidden layers

only feature set Xa. This shows that personal information (age and gender) could effectively

improve thermal comfort prediction. Moreover, the TL-MLP-C* model has the best prediction

performance compared with the other methods in both metrics when considering personal

factors.

In comparison to feature sets Xa and Xb, the random forest, MLP, TL-MLP and TL-MLP-

C* work best among all metrics on the feature set Xc. This proves that outdoor environmental

changes can affect occupants’ thermal sensation in HVAC buildings and shows the necessity to

consider outdoor features for effective thermal comfort modelling.

6.5.4 Impact of the Number of Hidden Layers

We also conduct adaption experiments by using different numbers of hidden layers in the TL-

MLP-C* model. Figure 6.10 shows the prediction accuracy and F1-score for TL-MLP-C* with

different numbers of hidden layers. We can observe that the prediction performance is worst

in all metrics with only one hidden layer. Since our proposed method transfers the last layer of

the hidden layer, if we set only one hidden layer, the target dataset will have little contribution

to the prediction model. When the number of hidden layers is set to 2, the proposed TL-MLP-

C* model has the highest prediction performance in accuracy and F1-score. As the number of

hidden layers continues to increase, the prediction performance tends to decrease, which may

be due to the model being overfitted with more trainable parameters.

Finally, although our proposed TL-MLP-C* model has better thermal comfort prediction
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performance than the state-of-the-art methods, the achieved accuracy (54.50%) is still not

remarkably high. There are several potential reasons: (1) We adopt the TabularGAN to

resample the minority classes for meaningful classification. Fifty percent of the instances in

each class were synthesized while ensuring that the number of samples per category did not

exceed the number of samples in the majority class. Although some previous works achieve

slightly higher accuracy for thermal comfort prediction (e.g., 63.09% in [35] and 62% in [318]),

they only assigned slightly higher weights to the instances in the minority classes, which cannot

handle the class imbalance problem as well as our method. (2) Predicting thermal comfort is

challenging since many factors affect occupants’ thermal sensation (as discussed in Section

6.1). There may also be many response biases during the survey. Therefore, the classification

accuracy in most previous research is also not good and rarely higher than 60%, even for

personal thermal comfort modelling. (3) It could be better to regard the thermal comfort

prediction as a regression problem instead of a classification problem. For example, classifying

’-2’ (cool) to ’-1’ (slightly cool) should be more acceptable than classifying ’-2’ (cool) to ’+2’

(warm). We will study the thermal comfort regression in future work.

6.6 Conclusion

A huge amount of sensor data has been generated in cities worldwide. Recently, utilising such

data from multiple cities to benefit a target city has become a critical issue. In this research,

we applied the idea of transfer learning to the thermal comfort area and proposed two transfer

learning-based thermal comfort prediction models: TL-MLP and TL-MLP-C*. For the first

time, we transferred the knowledge from similar thermal environments to a target building for

effective thermal comfort modelling. Furthermore, we improved the prediction performance

and built meaningful classifiers by using a GAN-based resampling method (i.e., TabularGAN )

to imbalance the class distribution of occupants’ thermal sensation.

By retaining the last hidden layer of the neural network from the source domain (ASHARE

RP-884 and Scales Project datasets), we trained the thermal comfort model for the Friends

Center building from the Medium US Office dataset and found the optimal parameter settings

for lower hidden layers. Extensive experimental results showed that the proposed TL-MLP and
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TL-MLP-C* models outperform the state-of-the-art algorithms for thermal comfort prediction.

Interestingly, the most significant feature sets are identified for effective thermal comfort trans-

fer learning.

This chapter shows the possibility of building thermal comfort models with limited data.

The publicly available thermal comfort data from similar climate zones can be used to benefit

the thermal comfort modelling in the target building. However, the current studies have some

limitations that needed to be addressed in future research: (1) First, we only used the Friends

Center Office as the target building which is located in the ‘temperate’ climate zone. The

performance of transfer learning on more target buildings in the same or different climate

zones should be explored in the future. (2) Although the proposed method can benefit the

target building with a small amount of labelled data, the prediction model will achieve the best

performance when at least six factors are provided. In real-world scenarios, if there are only

several factors (lower than six) in the target building, our method can still work by setting

the values of missing factors to the same distribution as the source domain, but the prediction

performance for the target building will be affected. (3) We only investigated the MLP model

because it is one of the most classical types of neural networks, which is suitable for classification

with tabular datasets. More advanced transfer learning architectures can be explored in the

future to find transferable representations between the source domain and target domain in

future studies.
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Conclusion

Research into sensing and profiling human behaviours has been a popular topic over the past

decades and continues to grow. With advancements in the IoT, a huge amount of sensing data

can be generated, stored, processed and analysed from various devices within an acceptable

time, which is revolutionary in the field of data science and ML.

The aim of this research was to build a human behaviour sensing framework with predictive

capabilities in multiple real-world scenarios for both single domain modelling and domain

adaptation. The core chapters of the thesis addressed key challenges related to data acquisition

in natural settings, the representation of dynamic human behaviours and mental states, and

the shortage of annotations in human studies. Five research questions were constructed to

derive specific solutions to these research issues for different tasks, including inferring user

engagement, seating behaviours, personality traits, response time and thermal comfort. The

benefits of this study are extensive, ranging from helping individuals improve their level of self-

awareness and adopt healthier lifestyles to assisting managers and policymakers in creating the

right study/work environments to improve human wellbeing.

This thesis tackled several issues around sensing and profiling human behaviours and made

the following contributions to the field:

• We publish the largest heterogeneous indoor environmental and affect sensing dataset

for understanding various human behaviours and discussing the reliability of self-report

164
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data as the ground truth in human behaviour studies.

• We integrate individual/group human behavioural dynamics with domain knowledge in

multiple real-world scenarios (i.e. seating patterns, personality traits, notification re-

sponse behaviours and thermal comfort).

• We incorporate sensing data from various environments and multiple sources (i.e. wear-

able, mobile and environmental sensing) to create a robust predictive model.

• We predict human behaviours of a domain using scarce data based on knowledge learned

from available data from previously modelled domains.

The research presented in this thesis focused on profiling and modelling human behaviours

using sensing technology in the wild. It explored different ML solutions for physiological

and behavioural sensing data in multiple real-world scenarios. Some of the experiments were

carried out on the self-collected dataset En-Gage, as introduced in Chapter 2, and some on

other popular publicly released datasets. The proposed frameworks and predictive models in

each chapter were consistently connected from the viewpoint of the research process for sensing

human behaviours. The developed techniques reduced the rate of false predictions and were

designed to assist developers, managers and policymakers to improve mental health, wellbeing

and productivity of individuals using the prediction results.

7.1 Research Questions and Answers

RQ-1. How to capture and validate multidimensional human behaviours and states using

heterogeneous sensors in the wild?

RQ-1 was addressed in Chapter 2. We presented the heterogeneous data collection using

data from wearable sensors, environmental sensors and self-report responses. We conducted

a field study at a private school in the suburbs of Melbourne, Australia in which we tracked

23 students and 6 teachers in a four-week cross-sectional study, using wearable sensors to log

physiological data and self-report surveys to query the occupants’ thermal comfort, learning

engagement, emotions and seating behaviours. The released dataset is the largest and most
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heterogeneous indoor environmental and affect sensing dataset and can be used to further

analyse human behaviours and mental states, study peer effects on students and create com-

fortable indoor environments. In addition, we discussed the reliability of self-report data for

human behaviours by studying the confidence level of responses and survey completion time.

We found that the physiologically measured student engagement and perceived student en-

gagement were not always consistent, which serves as a wake-up call for the emotional and

mental sensing research, which usually regards self-report annotations as the ground truth for

predicting human behaviours.

RQ-2. How to model and predict people’s emotional, cognitive and behavioural engagement

using wearable and environmental sensor data?

To address RQ-2 , Chapter 3 explored the usefulness of wearable and environmental sensing

data in modelling user engagement in the wild. Using the data collected in Chapter 2, a class-

room sensing system n-Gage was proposed to detect students’ in-class emotional, behavioural

and cognitive engagement. In particular, we combined physiological signals, behavioural data

and indoor environmental data to estimate changes in student engagement levels. Novel fea-

tures were proposed to represent the physiological and physical synchrony between students,

which proved to be useful for predicting student engagement. Comprehensive experiments

were conducted to predict the multidimensional student engagement scores using LightGBM

regressors. Experiment results showed that n-Gage achieved a high degree of accuracy for

predicting student engagement. In addition, various factors were derived, and the most useful

sensors were explored to differentiate between the dimensions of learning engagement.

RQ-3. How to explore the effects of individual and gropu behaviours (e.g. seating patterns)

on people’s perceived and physiologically measured engagement in different courses?

Chapter 4 focused on tackling RQ-3 and explored how individual and group-wise class-

room seating experiences affect students’ perceived engagement and physiologically measured

engagement. In Chapter 3, we showed that student engagement could be inferred from their

physiological sensing signals. Therefore, using the dataset from Chapter 2, we investigated the

physiologically measured engagement by examining students’ physiological arousal and syn-

chrony. We identified statistically significant correlations between student seating behaviours
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and students’ perceived and physiologically measured engagement. Experimental result showed

that students who sat close together were more likely to have similar learning engagement and

had higher physiological synchrony than students who sat far apart.

RQ-4. How to utilise mobile sensing to profile personality traits and receptivity to inter-

ruptions among different user groups?

In Chapter 5, RQ-4 was addressed. We explored the use of unobtrusive mobile sensing

for user behaviour profiling. Two real-world scenarios were considered for user behaviour

prediction scenarios. The first scenario involved modelling users’ mental characteristics (i.e.

Big Five personality traits). Based on the proposed novel metrics (i.e. diversity, dispersion

and regularity), some important features were extracted from mobile phone logs, call logs

and acclerometer data to represent human activities. Experimental results showed that the

predicted personality scores were close to the ground truth, with an observable reduction in

errors in predicting the Big Five personality traits for both males and females. In the second

scenario, we explored the effect of individuals’ smartphone usage behaviors and moods on

notification response times. An in-the-wild study was conducted with more than 18 participants

over a five-week period. In total, we have collected 42,270 notifications, 3,553 self-report

responses and more than 5,920 hours of physiological signals from Empatica E4 wristbands. We

found a statistically significant correlation between response time and in-use apps. Extensive

experiments showed that the proposed regression model achieved high predictive performance

for notification response times. We also investigated how the mood-related features improve

the predictive performance by utilising the self-report responses and physiological signals.

RQ-5. How to model aggregate behaviour (e.g., thermal comfort) from environmental

sensing with limited annotations by transferring knowledge from multiple locations to another

domain?

RQ-5 was covered in Chapter 6. We aggregated occupant thermal comfort data from envi-

ronmental sensors with limited annotations by transferring knowledge from multiple locations

to a separate domain. We proposed two transfer learning-based thermal comfort prediction

models: TL-MLP and TL-MLP-C*. For the first time, we transferred knowledge from similar

thermal environments to a target building for effective thermal comfort modelling. In addition,
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we improved the predictive performance and built meaningful classifiers by using a GAN-based

resampling method (i.e. TabularGAN ) to imbalance the class distribution of occupants’ ther-

mal sensation. Extensive experimental results on the popular publicly available datasets (i.e.

ASHRAE RP-884, Scales Project and Medium US Office) showed that the performance of the

proposed TL-MLP-C* model exceeded the performance of state-of-the-art methods in both

accuracy and F1-score.

7.2 Future Research Directions

The proposed methods outperformed existing models in terms of predictive performance, het-

erogeneity of the sensing data and diversity of the real-world scenarios. However, some im-

provements could be considered in several areas: the proposed approaches, better predictive

performance and real-world deployments. From this research, several directions for future

research on human behaviour sensing using extensive sensor data and machine learning tech-

niques have emerged. The most important aspects are data acquisition and processing, human

behaviour itself, and models and evaluations [3].

Currently, sensor data generated from by sensors in the wild are heterogeneous in format

and storage. Such datasets usually lacks descriptions and are ad hoc, making it difficult to

share and reuse them. When researchers are able to analyse these datasets, they face challenges

during data acquisition and processing. In the future, it would be useful to explore the possi-

bility of creating more datasets with sufficient descriptions and structured, real-world data on

human behaviour gathered from heterogeneous sensors, as this would benefit researchers in a

variety of disciplines. In addition, self-report data are prone to subjectivity and responses bias,

making it risky and inaccurate to use it as the ground truth for human psychological states.

Therefore, more research should be done to investigate the reliability of self-report annotations

as ground truth and explore ways to combine subjective self-report responses and objective

physiological sensing data for more effective predictive models.

Human behaviours and states are usually affected by various factors (e.g. demographic

diversity, social relationships, time and physical spaces) and have characteristics such as capri-

ciousness, dynamics and multi-granularity [3]. Therefore, it is challenging to perceive and
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analyse human behaviours and states due to the difficulty in quantifying influencing factors.

In addition, human behaviours and states are usually complex and can be affected by inter-

actions with other people, e.g. a group of students interact with each other during in-class

activities, or an individual’s mental state can be influenced by others due to their ability to em-

pathise. The methods and approaches presented in this thesis may not be directly applicable to

the above scenarios. Therefore, more complex human behaviours (e.g. group behaviours, ab-

normal behaviours and criminal behaviors) should be explored in various real-world situations

in future studies.

A variety of models have been proposed for effectively profiling human behaviours and

states. The transfer learning approach is a promising area when limited labels are available

in human behavioural studies. However, transfer learning research is still in its infancy, and

research needs to branch out in more directions, such as incremental learning and unsupervised

domain adaptation without any labeling. In this area of research, it is difficult to evaluate and

compare results relating to predicted human behaviours with results from prior studies because

human behaviour varies between subjects in real-world scenarios. To establish standards for

perceiving human behaviour, it is important to clarify the processing techniques, baselines and

experimental settings in future research.

Finally, though sensing human behaviours has achieved good performance and is widely

adopted, it is usually intrusive and has raised issues such as ethics, privacy, and deployment

cost [3]. In general, the ethical evaluation of sensing technology is highly dependent on the

application areas and contexts of use, and there are certain obligations to be respected [354].

For instance, anyone working in the area should abide by the ethics that govern human research

and data privacy; they should uphold ethical values that make sensing technologies involving

humans more likely to have positive effects and less likely to have negative effects; they should

ensure the system does nothing that the users would object to, and let users understand what’s

going on. Additionally, researchers should work closely with non-experts to form a realistic

assessment of the capabilities of the systems and the risks they might pose. In future research,

we need to pay close attention to issues of ethics and privacy, as well as the gap between

real-world system deployment and theoretical models, so as to help sensing technology better
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improve human well-being.
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[24] Heli Koskimäki, Hannu Kinnunen, Teemu Kurppa, and Juha Röning. How do we sleep:
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