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The study of student engagement has attracted growing interests to address problems such as low academic performance,
disaffection, and high dropout rates. Existing approaches to measuring student engagement typically rely on survey-based
instruments. While effective, those approaches are time-consuming and labour-intensive. Meanwhile, both the response rate
and quality of the survey are usually poor. As an alternative, in this paper, we investigate whether we can infer and predict
engagement at multiple dimensions, just using sensors. We hypothesize that multidimensional student engagement level can
be translated into physiological responses and activity changes during the class, and also be affected by the environmental
changes. Therefore, we aim to explore the following questions: Can we measure the multiple dimensions of high school student’s
learning engagement including emotional, behavioural and cognitive engagement with sensing data in the wild? Can we derive
the activity, physiological, and environmental factors contributing to the different dimensions of student learning engagement?
If yes, which sensors are the most useful in differentiating each dimension of the engagement? Then, we conduct an in-situ
study in a high school from 23 students and 6 teachers in 144 classes over 11 courses for 4 weeks. We present the n-Gage,
a student engagement sensing system using a combination of sensors from wearables and environments to automatically
detect student in-class multidimensional learning engagement. Extensive experiment results show that n-Gage can accurately
predict multidimensional student engagement in real-world scenarios with an average mean absolute error (MAE) of 0.788
and root mean square error (RMSE) of 0.975 using all the sensors. We also show a set of interesting findings of how different
factors (e.g., combinations of sensors, school subjects, 𝐶𝑂2 level) affect each dimension of the student learning engagement.
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1 INTRODUCTION
In education, student engagement refers to the degree of attention, interest, curiosity, and involvement in the
learning environment [43]. The study of student engagement has attracted growing interests as a way to address
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the problems of low academic achievement, high levels of student boredom, disaffection, and high dropout rates
in urban areas [34, 35]. Previous research showed that student engagement declines as students progress from
elementary to middle school, reaching its lowest levels in high school [22, 58, 59]. Marks et al. [58] estimated
that as many as 40-60% of high school students are disengaged (e.g., uninvolved, no interests, and not attentive).
The consequences of disengagement for high school students are severe. They are less likely to graduate from
high school and face limited employment prospects, increasing risks for poverty, poorer health, and involvement
in the criminal justice system [22]. Given the negative impact of disengagement, more and more researchers,
educators, and policymakers are interested in obtaining data on student engagement and disengagement for
needs assessment, diagnosis, and preventive measures [59].
Generally, student engagement is defined as a meta-construct that includes three dimensions [34, 35]: (1)

behavioural engagement focuses on participation and involvement in academic, social, and co-curricular activities.
Some researchers define behavioural engagement with regards to positive conduct, e.g., following the rules, and
the absence of disruptive behaviour such as skipping school [32, 33, 35]; (2) emotional engagement focuses on the
extent of positive and negative reactions to teachers, classmates, academics, and school, which includes a sense
of belonging or connectedness to the school [31, 35]; (3) cognitive engagement draws on the idea of investment in
learning. It incorporates thoughtfulness and willingness to put effort to comprehend complex ideas and master
difficult skills [21, 34, 35]. One of the widely used method for measuring student engagement is self-report survey,
e.g., Motivated Strategies for Learning Questionnaire (MSLQ) [74], School Engagement Measure (SEM) [64], and
Engagement vs. Disaffection with Learning (EvsD) [87]. Though generally reliable, the survey is time-consuming
and may become a burden for participants if they need to complete it for each class.
Therefore, we want to investigate whether we can infer and predict multidimensional student engagement

just using sensors. In particular, we conduct the research around the following hypothesis: the multidimensional
student engagement level can be translated into physiological responses and activity movements during the
class, and can also be affected by environmental changes. In previous studies, various physiological data, (e.g.,
electrodermal activity (EDA), heart rate variability (HRV), accelerometer (ACC), skin temperature (ST)) and
environmental data have been explored to assess the emotional arousal and engagement level in different
scenarios. For instance, EDA is usually considered as a good indicator of psychological or physiological arousal
(e.g., emotional and cognitive states [12, 23]) , which has been increasingly explored in affective computing,
such as the detection of emotion [7, 16], depression [79] , and engagement [27, 47, 55]. Recently, Pflanzer et al.
[73] stated that EDA monitoring should be combined with the heart rate because they are both autonomically
dependent variables. Heart rate has been used for student engagement prediction [63] and the correlation of
heart rate and cognitive/emotional engagement has been found in [37]. As the most commonly used sensor in IoT
devices, accelerometer is proven to be powerful for quantifying human behavioural patterns [39, 93]. It has been
used for demonstrating how synchronized movement of people can enhance group affiliation [91] and sensing
engagement using interpersonal movement synchrony [95].
In this paper, our research questions are as follows: 1. Can we measure the multiple dimensions of high school

student’s learning engagement including emotional, behavioural and cognitive engagement with sensing data in the
wild? 2. Can we derive the activity, physiological, and environmental factors contributing to the different dimensions
of student learning engagement? If yes, which sensors are the most useful in differentiating each dimension of the
engagement? To answer the above questions and enable automated engagement detection, we present a new
classroom sensing system n-Gage to assess the behavioural, emotional and cognitive engagement levels of high
school students. The system utilizes sensing data from two sources: (1) wearable devices capturing physiological
and physical signals (e.g., EDA, HRV, ACC, ST); (2) indoor weather stations capturing environmental changes
(e.g., temperature, CO2, sound). The study has been approved by the Human Research Ethics Committee at our
University and the high school where it is conducted, and all the procedures follow the ethical codes. The main
contributions of this paper include:
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• We collect a dataset of 23 high school students and 6 teachers in 144 classes over 11 courses for 4 weeks.
Weather stations are installed in 3 classrooms, and student participants are asked to wear the E4 wristbands
and complete online survey 3 times a day to report their behavioural, emotional and cognitive engagement
level during the classes. To the best of our knowledge, this is the most diverse and largest dataset collected
in the wild to measure student engagement using sensors.

• We build n-Gage, a classroom sensing system to automatically measure the multidimensional engagement
(behavioural, emotional and cognitive engagement) of high school students during the classes. In particular,
we combine physiological signals, physical activities, and indoor environmental data to estimate the
changes in student engagement levels. To the best of our knowledge, this is the first system to detect
student engagement from multiple sensors in the wild.

• We extract new features to represent the physiological and physical synchrony between students which
proved to be useful for the student engagement prediction. For the first time, we extract features from skin
temperature and indoor environment for effective engagement estimation.

• We conduct comprehensive experiments to predict multidimensional student engagement scores with
LightGBM regressors. The experiment results show that n-Gage reaches a high accuracy (0.563 MAE and
0.715 RMSE score) for student engagement prediction. We also derive different factors and explore the
most useful sensors in differentiating each dimension of the learning engagement.

• We show a set of interesting insights on how different factors affect student engagement. For example, the
CO2 level in the classroom has a negative impact on students’ cognitive engagement, which highlights the
need to ventilate the classroom timely to improve student engagement.

The remainder of the paper is as follows. Section 2 introduces related works of traditional methods for
measuring engagement, and the recent progress of engagement prediction with sensing technology. Section 3
describes the data collection procedures, including participant recruitment, equipments for data collection, and
the self-report instrument. Then we introduce data pre-processing techniques in Section 4. In Section 5, we extract
various features from physiological signals and environmental changes. Section 6 introduces the prediction
pipeline and Section 7 shows experiment results and in-depth discussion about engagement prediction. Section 8
lists the implications and limitations of our work. Finally, we summarize this research in Section 9 and indicate
the potential direction of future work.

2 RELATED WORK

2.1 Traditional Methods for Measuring Engagement
In the education area, there are various methods to study student engagement. (1) Student Self-report is the
most common method to assess student engagement as it is easy to execute in classroom settings. Students
are provided with items reflecting different dimensions of engagement and then select the response that best
describes them [35]. However, the self-report survey is labour and time-consuming, and students may not be
willing to answer too many questions honestly at a time, leading to low-quality responses [5]. (2) Experience
Sampling [85] allows researchers to collect responses at the moment, which reduces the problems of recall-failure
and social-desirability bias happened in the self-report surveys. However, it requires a huge time investment from
students, and the quality of responses largely relies on the students’ willingness and ability to answer [35]. (3)
Teacher Ratings of Students [35] can be useful for young students with difficulty in completing self-report surveys.
Behaviour can be observed directly from teachers, but emotion engagement is difficult to be observed as students
may learn to mask their emotions [35, 86]. (4) Interviews can provide a detailed description of the student’s
performance during the learning process. However, the quality of responses depends on the expert knowledge
from the interviewers. (5) Observations [35] on the individual student or whole students in the classroom have
been developed to assess engagement, which can be time-consuming for the administration and all kinds of
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Table 1. Related works for engagement prediction with sensing data

Prediction Data source Participants Data Sessions

Audience Engagement [95] ACC data 10 children audience
in art performance not stated

Social Engagement [47] EDA data (wristband) Children during social
interactions 51 sessions

Game Engagement [49] EDA, PPG data 10 players in 6 mobile
games in natual settings not stated

Audience Engagement [41] EDA, PPG data 10 attendess and 19
presentors in presentations 40 sessions

Student Engagement [1] Video, audio data 25 university students
in 5 classrooms not stated

Student Engagement [63] Video, heart rate data 23 university students
in laboratory settings not stated

Student Engagement [60] EDA data (hand sensor) 17 undergraduate students
in climate science classes not stated

Student Engagement [92] EDA data (hand sensor) 17 university students in
learning environments not stated

Emotional Engagement [27] EDA data (wristband) 27 university students in
41 lectures over 3 weeks 197 sessions

Multidimensional Student
Engagement (this work)

EDA, PPG, ST, ACC,
CO2, Noise, etc.

23 high school students in
98 classes over 4 weeks 331 sesssions

academic settings need to be considered to get an accurate picture of student behaviour. The reliability of the
observations can be doubtful as they only provide limited information about students.
All traditional methods for engagement measurement have strengths and limitations in different situations.

Overall, traditional methods are usually time-consuming, and the quality of answers largely depends on the
students, teachers, or executor. Recently, with the development of wearables and IoT sensors, some initial progress
has been explored to measure student engagement with physiological signals which is more subjective and
obtrusive to students.

2.2 Engagement Prediction with Sensing Technology
Sensing technologies are becoming prevalent to assess people’s mental characteristics (e.g., engagement [27, 47–
49, 95], mood [65, 93], stress [7, 93], personality [39]) and have provided an attractive alternative to traditional
self-report surveys. Wang et al. [93] gathered students’ mental health data such as mood and stress from self-
report surveys in Dartmouth college. They also recorded students’ activity data from passive sensors and found a
significant correlation between the sensor data and mental health. Morshed et al. [65] predicted mood instability
only using sensed data from mobile phones and wearable sensors for individuals in situated communities. Wang
et al. [94] predicted human personality traits from passive sensing data from mobile phones using within-person
variability features such as regularity index of physical activity, the circadian rhythm of location.

Physiological sensors and accelerometers have been explored to assess human’s engagement (see Table 1),
such as assessing audience engagement during the art performance, social engagement for children during the
interaction with adults [47], emotional engagement for university students during lectures [27].
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Ahuja et al. [1] built a classroom sensing system with commodity cameras. Students’ and instructor’s video and
audio were captured for body segmentation and speech detection. Then, the students’ engagement levels were
analyzed based on their facial expressions and gestures. However, as reported from authors, this system would
bring privacy concerns [54] when capturing audio and video data. Similarly, Hutt et al. [48] used commercial
off-the-shelf eye-trackers to detect mind wandering for high school students and Monkaresi et al. [63] used heart
rate and video-based estimation of facial expressions to predict the engagement of 23 university students during
a structured writing activity in laboratory settings.

Only a few studies investigate student engagement in real-world settings [27, 37, 60, 92]. Mcneal et al. [60] used
EDA hand-sensors to measure the engagement from 17 undergraduate students in climate science classes during
a semester. They explored different teaching approaches on a subset of students and reported the statistical mean
value of EDA traces. Contrast to their study, we collect a far more heterogeneous data set and novel features were
proposed based on different physiological indices. Wang et al. [92] studied 17 university students’ engagement in
the distributed learning environment with EDA hand sensors, and found that EDA measurements were aligned
with surveys. Different to our research, they only used a very simple question ’how much did you enjoy during
the lecture’ as the ground truth of students’ engagement.
In recent years, researchers have started to explore different dimensions of engagement using physiological

signals. Lascio et al. [27] predicted university students’ emotional engagement from EDA sensors in lectures
during 3-week data collection. While in our data collection, we build an in-class multidimensional (behavioural,
emotional, cognitive) engagement sensing system including physiological responses (i.e., EDA, HRV, ST), physical
movements (ACC) and indoor environmental sensors (i.e., CO2, temperature, humidity, sound) for high school
students. Furthermore, high school classes are very different from lectures at university in [27] (e.g., degree of
freedom to choose courses, ability to schedule classes flexibly, requirements of class attendance, consistency of
subjects between different schools), which may lead to very different multi-engagement distribution in high
school classes. Another similar research, but for a different application, was proposed by Huynh et al. [49] who
measured the engagement level of game players with multiple sensors. Though they agreed that user engagement
includes three dimensions, they did not differentiate each dimension when predicting the engagement during
the game. Nevertheless, in our study, we derive the different factors and most useful sensors contributing to the
different dimensions of student learning engagement.

In summary, different from previous efforts, our work has several advantages: (1) we use far more heterogeneous
data for engagement prediction (others only use EDA or heart rate data except [49]); (2) we propose and extract
more meaningful features from physiological signals while [37, 60, 92] only use the simple average value of
data; (3) to the best of knowledge, we are the first to predict the engagement for all three dimensions based on
education research while previous studies either measure the simple general engagement, or a single dimension
of engagement [27]), and derive the most useful sensors in differentiating each dimension of engagement; (5) we
adopt real-world classroom settings and take the influence of environmental changes into account.

3 DATA COLLECTION
We conducted a field study in a private high school for 4 weeks in 2019. The data collection has been approved
by the Human Research Ethics Committee at our University. We will then provide the details about participants,
equipments to collect the data, and data collection procedures.

3.1 Participants
We recruited 23 students (13 females and 10 males, 15-17 years old) and 6 teachers (4 females and 2 males,
33-62 years old) in Year 10 (see Table 3). First, we gave an introduction to all Year 10 students and teachers,
and distributed consent forms to them. Then, students or teachers who volunteered to participate returned the
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Table 2. Room allocation for different class
groups. Most classes belong to form group.

Room Number of Students

Form Math Language

Room 1 10 7 13
Room 2 6 9 2
Room 3 7 7 5
Room 4 NaN NaN 3

Table 3. Basic information for student and
teacher participants.

Category Students Teachers

Total Number 23 6
Female 13 4
Male 10 2
Age 15-17 y.o. 33-62 y.o.

signed consent form from themselves and their (students’) guardians. Once they signed forms, they were asked
to complete the online background survey. Background information was collected at once including age, gender,
how their engagement is affected by their thermal feelings, form class group, math class group, and language
class group. There are 3 form classes in Year 10 and students are in form groups when having most classes (i.e.,
English, Global Politics, Science, Physical Education, Health/Sport). For Mathematics class, students are divided
into 3 study groups and students in each group take classes in individual classrooms. For Language class, students
have 4 different groups such as Japanese, French, Cultural Sustainability, and each group has classes in different
classrooms too. Hence, the background information of different study groups helps us align students in different
classrooms (see Figure 1(c)) at different times. We also recruited 3 Math teachers, 1 English teacher, 1 Japanese
teacher and 1 Science teacher. Table 2 shows the details about room allocation for participants.

3.2 Collected Data
3.2.1 Physiological and Activity Data. During the school time, we asked participants to wear Empatica E4 1

wristbands as shown in Figure 1(a), first proposed in [40]. E4 wristband is a watch-like device with multiple
sensors: electrodermal activity (EDA) sensor, photoplethysmography (PPG) sensor, 3-axis accelerometer (ACC),
and optical thermometer. EDA depicts constantly fluctuating changes in skin electrical properties at 4 Hz. When
the level of sweat increases, the conductivity of skin increases. PPG sensor measures the blood volume pulse
(BVP) at 64 Hz, from which the inter-beat interval (IBI) and heart rate variability (HRV) can be derived. ACC
records 3-axis acceleration in the range of [-2g, 2g] at 32Hz and captures motion-based activity. The optical
1Empatica E4 wristband: https://www.empatica.com/en-int/research/e4/

(a) Empatica E4 wristbands (b) Netatmo indoor weather station (c) Classroom for Year 10 students

Fig. 1. Devices and environments for collecting wearable and indoor data
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Fig. 2. Temperature and CO2 data in R1, R2, R3 (room 1, room 2, room 3) at 11:00 am on 11 Sep 2019. Room 4 is not shown
here as it is in another building.

thermometer reads peripheral skin temperature (ST) at 4 Hz. In the recording mode, E4 wristband can store 60
hours of data in the memory, and the battery can last for more than 32 hours. It is light-weight, comfortable and
water-proof, thus especially suitable for continuous and unobtrusive monitoring of participants in our study.

3.2.2 Indoor Environmental Data. We collected indoor environmental data from the Netatmo Healthy Home
Coach 2 - a smart indoor weather station - installed in the classrooms as shown in Figure 1(b) and Figure 1(c).
The Netatmo station can collect indoor temperature (TEMP), humidity (HUMID), CO2 and sound (SOUND) in
every 5 minutes. Real-time data can be uploaded to the Cloud continuously through the Guest WiFi covered on
the campus. Figure 2 shows the indoor temperature and CO2 level in three rooms at 11:00 am on 11 Sep 2019.
We can clearly see that the temperature of room 3 is only 12.3 ℃ and much lower than the comfortable warmth
(18 ℃) defined by the World Health Organization’s standard [69], which may negatively affect student learning
in class [50]. Furthermore, CO2 levels in room 2 and room 3 are beyond 2000 ppm, which has been proved to
have a negative influence on the student cognitive load in the classroom [45, 80]. Based on previous studies [72],
students may become sleepy and inattentive during the class when the CO2 level is too high.

3.2.3 Ground Truth: Self-report Survey Instrument Data. In this study, we choose to use self-report survey to
gather subjective measurements of students’ in-class engagement. As discussed in Section 2, the self-report survey
is the most common way to measure student engagement as they can reflect students’ subjective perceptions
explicitly. Instead, measures relying on experience sampling, teacher ratings, interviews or observations have been
reported to be easily affected by the external factors. The questionnaire includes 5 items related to behavioural,
emotional, and cognitive engagement of the validated In-class Student Engagement Questionnaires (ISEQ) [37],
which has been proved to be effective for measuring multidimensional engagement compared to the traditional
long survey. Similar to [27, 49], we slightly adapted survey questions from university lectures to high school class
context to make the survey easier for students underage to understand. Moreover, for cognitive engagement
measurement, we did not use the original question ‘the activities really helped my learning of this topic’ in [37],
considering that some classes in high school do not have in-class activities. Instead, we use the well-accepted item
’I asked myself questions to make sure I understood the class content’ [64], which is a good reflection of cognitive
engagement. Table 4 shows the questionnaire used for measuring multidimensional student engagement in class,
where item 1,3 and 5 assess the behavioural, emotional and cognitive engagement, item 2 and 4 indicate the
behavioural and emotional disaffection [37, 87] .
2Netatmo Healthy Home Coach: https://www.netatmo.com/en-eu/aircare/homecoach
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Table 4. Self-report items for measuring in-class engagement in online survey.

Questions (please describe your engagement in the last class) Subscales
1. I paid attention in class. Behavioural
2. I pretended to participate in class but actually not. Behavioural (-)
3. I enjoyed learning new things in class. Emotional
4. I felt discouraged when we worked on something. Emotional (-)
5. I asked myself questions to make sure I understood the class content. Cognitive
Note: (-) means the reversed score.
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Fig. 3. Histograms of the Answers. The X axis shows the 5-Likert scale from -2 to 2 which means ’strongly disagree’ to
’strongly agree’. The Y axis shows the number of the responses that fall into the specific scale.

In the questionnaire, each item 3 is rated with a 5-point Likert-scale from -2 to 2, which indicates ’strongly
disagree’, ’somewhat disagree’, ’neither agree nor disagree’, ’somewhat agree’ and ’strongly agree’. Figure 3 shows
the distribution of responses for each item from total 488 responses. The online self-report survey is constructed
with the external tool named Qualtrics 4. Participants were asked to complete the survey on the public tablets or
their digital products with the given survey link generated by Qualtrics.

3.3 Procedure
Before the data collection, all wristbands were synchronized with the E4 Manager App from the same laptop
to make sure the internal clocks are correct. 1 Netatmo weather station was installed and 1 tablet was put on
the teacher desk in each classroom. Students were asked not to unplug the Netatmo stations during the data
collection.
The first two weeks of data collection occurred in early September (winter in the southern hemisphere), and

the next two weeks of data collection completed in November (spring in the southern hemisphere). We collected
data from two different seasons to build a more robust engagement sensing system. As we know, different seasons
usually result in different indoor environments (e.g., indoor temperature, humidity), which may affect students’
sweat level (EDA, ST) and activity level (ACC, HRV). If we use the data from one season to build the engagement
prediction model, the prediction performance can be greatly reduced in another season due to changes in activity,
physiological, and environmental data. Before the data collection, 1 participant was chosen as the representative
3In the survey, participants were also asked to report their thermal feelings and mood using the Photographic Affect Meter (PAM) [75].
Nevertheless, this data was not considered in this paper.
4Qualtrics: https://www.qualtrics.com/au/
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in each form class, for a total of 3 representatives. During the data collection, student participants were distributed
with the same wristband (attached with the student ID label) from the representative at 8:50 before the first class
started at 9:00. Then at the end of the school day (i.e., 15:35), the representative would remind student participants
to hand in wristbands. Student participants were asked to wear the wristband on non-dominating hands and
avoid pressing the button or performing any unnecessary movements during class. For teacher participants, they
only need to wear the wristband during their classes.

On each school day, student participants were asked to complete the online surveys (either through the public
tablets or their own digital devices) at 11:00, 13:25, 15:35 (right after the 2𝑛𝑑 , 4𝑡ℎ , 5𝑡ℎ class). The length of 2𝑛𝑑 and
4𝑡ℎ class can either be 40 minutes or 80 minutes on the different school day and the 5𝑡ℎ class always lasts for 80
minutes. From the class table for Year 10 students, they have the same class schedule on the 1𝑠𝑡 week and 3𝑟𝑑
week, and another class schedule on the 2𝑛𝑑 and 4𝑡ℎ week. Each representative would remind student participants
to complete online surveys on time. However, considering that it could be a burden for some participants to
complete the survey 3 times a day, we did not urge students to complete the survey for ensuring the quality of
survey responses. By the end of the 4𝑡ℎ week, we had received 488 valid responses in total and the response rate
is 35.3%.
As a token of appreciation, the certificate of participation and four movie vouchers were provided to the

participants during the 4-week data collection. It is worth noting that participation in this research project is
voluntary. Participants are free to withdraw from the project at any stage if they change their minds. Besides, we
anonymized all the participants to protect their privacy.

4 DATA PREPROCESSING
In this section, we first extract class periods based on students’ accelerometer data using unsupervised time
series segmentation method. Then we introduce the data cleaning process and data pre-processing technique for
electrodermal activity, blood volume pulse, accelerometer data, and skin temperature data.
For data preparation, we only remain the data between 9:00 am to 15:35 pm, which corresponds to the start

time of the first class and the end time of the last class. In addition, some students may have several data recording
segments during the same day due to the unexpected closure and re-open of the wristband. We drop the data
segments less than 15 seconds which is less helpful for extracting useful information. We also discard the data on
Tuesday in the last week because students had trip travel and did not have classes on that day.

4.1 Class Period Segmentation
As described in Section 3, student participants wear wristbands all day along and teachers participants are only
asked to wear the wristband at their classes. Participants report their engagement for the 2𝑛𝑑 , 4𝑡ℎ , 5𝑡ℎ classes of the
day during recess time, lunchtime and before going home. Though the scheduled class start/end time is already
known, teachers may start/finish the class a bit earlier or later than the scheduled time. The accurate class time
is significant for wearable data analysis because participants may have very different physiological/movement
patterns between in-class and after-class. For instance, increased activity level after class may lead to a higher
value of EDA (due to the higher level of sweat) and variation of accelerometer data.

To get the exact class start/end time for meaningful data analysis, we segment the accelerometer data from
student participants based on the assumption that students usually have different activity patterns before/after
class. Information-Gain based Temporal Segmentation (IGTS) [26, 78] is applied on the ACC data to calculate the
class start/end time. IGTS is an unsupervised segmentation technique, aims to find the transition times in human
activities, which is suitable for dividing the boundary between in-class and out-class [78]. Topdown optimization
is adopted in the ACC time-series segmentation. To calculate the class boundary, we choose the ACC time-series
from 5 minutes before the class to 5 minutes after the class. Take calculating the actual class end time as an
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Fig. 4. Calculated class end time with ACC data from 12 student participants.

example, from Figure 4, there are 12 participants in a class and the scheduled class end time is 13:25 (green vertical
dashed line). Applying IGTS on the ACC data, we can get 12 different estimated class end time from 12 ACC
traces. Then, the median time is chosen as the calculated class end time (red vertical dashed line). That is to say,
this class finishes early than the scheduled time. We apply IGTS on all the class data and extract the exact class
start time and end time for the later data analysis.

4.2 Data Cleaning
Before pre-process the collected data, a data cleaning stage needs to be conducted to remove noises from wearable
data. As describe in [7, 12, 27, 41, 47], there are several noises commonly happened in data collection from E4
wristband: (1) flat responses (i.e., 0 micro siemens) due to poor contact between the sensors and the skin. If the
contact is not tight enough, the sensor will not measure anything; (2) abrupt signal drops due to the movement
of the sensor (e.g., participant bumps the wristband onto the desk); (3) quantization errors. Since EDA sensor
records data through the two electrodes, which is more susceptible to noises compared with ACC, PPG and ST
sensor, we clean the data set mainly based on the quality of EDA data.
Firstly, we remove the data when students did not wear wristbands during the whole class or closed off the

wristbands unintentionally during the class. Similar to [41], we then discard the signals containing a huge number
of flat responses, abrupt signal drops and quantization error as suggested in [12, 47]. Finally, we discard the class
data from the student who did not complete the survey. The data cleaning stage leaves us with 331 class data
sessions. The final wearable data are gathered from 23 students and 6 teachers in 105 classes. 59 classes are short
classes (mean = 39.15 minutes, STD = 1.15 minutes) and 46 classes are long classes with 2 periods (mean = 78.21
minutes, STD = 4.33 minutes).

The data cleaning stage brings to the elimination of 157 class data sessions due to the lack of survey data, which
takes up to 32.17% of the total data with completed surveys. Though the number of eliminated data is considerable,
the size of our collected data is comparable and even larger than the previous studies. For instance, Lascio et al.
[27] used 197 EDA data sessions after a reduction up to 37%, Gashi et al. [41] used 40 presenter-audience EDA
pairs with the elimination of 72 pairs. Hernandez et al. [47] used 51 data sessions with the elimination of 28%
from the original data.
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4.3 Data Pre-processing
The pre-processing procedure is crucial improve the quality of collected data. For EDA signals, we follow the
same pre-processing steps as suggested in [27, 41, 47]. (1) Artifacts removal. To mitigate the influence of motion
artifacts (MAs), we apply a median filter on EDA data with a 5-second window as in [27]. (2) Decomposition. EDA
signal combines a tonic component and a phasic component [12, 14]. The tonic component varies slowly and
reflects the general activity of sweat glands influenced by the body and environmental temperatures. The phasic
component indicates rapid changes and related to the responses to internal and external stimuli. EDA signals
are decomposed with cvxEDA approach [42] using convex optimization. (3) Normalization. The amplitude of
the EDA signal varies a lot among different people [14] and thus limits the possibility of comparing the signal
directly. We normalize the mixed, tonic and phasic EDA values similar to [41].
PPG data, also known as BVP, is provided by the E4 wristband. Similar to [49], we extract IBI signals by

detecting the systolic peak of the heartbeat waveform signals from the raw PPG data (window size = 0.75 seconds).
Linear interpolation is applied when the heartbeat intervals can not be detected successfully from the low-quality
(e.g., motion artifacts) PPG signal. For the ACC data, we calculate the magnitude of 3-axis accelerations as
|𝑎 | =

√
𝑥2 + 𝑦2 + 𝑧2. Then a median filter with 0.2 seconds is applied to the magnitude value. Finally, we apply a

median filter on the ST data with 0.5 seconds.

5 FEATURE EXTRACTION
We use various sensing devices to infer multidimensional engagement level of high school students. Table 5
summarizes these features. Then, we introduce the computed features and discuss why we explore such sensors
and features.

5.1 EDA-based Features
EDA is a common measure of autonomic nervous system activity, with a long history being used in psychological
research [62]. Recently, EDA measurements have been increasingly explored in affective computing such as the
detection of emotion [7, 16], depression [79] , and engagement [27, 47, 55]. From EDA data, we extract statistical
features such as the standard deviation from EDA (mixed, tonic, phasic) data, which reflects the overall general
arousal during the class [27]. As suggested in [27], we extract the number of arousing/arousing states, the ratio
of arousing states, etc. to show the momentary engagement during the class. The similarity-based method such
as Pearson Correlation Coefficient (PCC) [8] and Dynamic Time Wrapping Distance (DTW) [82] are used to
evaluate the physiological synchrony [71] of the target student and teacher. Inspired by [95], we also propose
some new features (marked with *) to compute physiological synchrony between the target student and the
average values of other students, which has proven to be effective in Table 7.

5.2 HRV-based Features
HRV is controlled by the autonomic nervous system (ANS), which can be used to evaluate human emotional
arousal and cognitive performance [2, 4, 19, 56, 68]. With the help of HeartPy [90] toolkit, we compute HRV
features from IBI signals extracted from the raw PPG data. As suggested in [15, 61, 83], HRV features can
be analyzed from time-domain and frequency domain. On the time-domain, we capture features such as the
mean/standard deviation of RR intervals (Meani, SDNN) which estimates the overall HRV. We also extract
features such as standard deviation/root mean square of successive RR interval differences (SDSD, RMSSD),
number/percentage of successive interval pairs that differ larger than 20/50 ms (NN20, NN50, pNN20, pNN50),
which describes the momentary change of HRV. On the frequency-domain where parameters are computed by
applying Fast Fourier Transform (FFT) to the time series of RR intervals [83], we compute the absolute power of
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Table 5. Description of the features computed for different sensors

Sensors Feature name Description of features

EDA

eda/tonic/phasic_avg Average value for the raw, tonic, phasic data
eda/tonic/phasic_std Standard deviation for the raw, tonic, phasic data
eda/tonic/phasic_n_p Number of peaks for the raw, tonic, phasic data
eda/tonic/phasic_a_p Mean of peak amplitude for the raw, tonic, phasic data
eda/tonic/phasic_auc Area under the curve of the raw, tonic, phasic data
num_arouse Number of arousing moments during the class
ratio_arouse Ratio of arousing and unarousing moments
level𝑘 Ratio of the number of level𝑘 and the length of 𝑆𝑘
eda/tonic/phasic_pcct Pearson correlation coefficient with teacher
eda/tonic/phasic_pccs* Pearson correlation coefficient with average value of students
eda/tonic/phasic_dtwt Dynamic time wraping distance with teacher
eda/tonic/phasic_dtws* Dynamic time wraping distance with average value of students

PPG

hrv_bpm Average beats per minutes
hrv_meani Overall mean of RR intervals (Meani)
hrv_sdnn Standard deviation of intervals (SDNN)
hrv_lf_power Absolute power of the low-frequency band (0.04–0.15 Hz)
hrv_hf_power Absolute power of the high-frequency band (0.15–0.4 Hz)
hrv_ratio_lf_hf Ratio of LF-to-HF power
hrv_rmssd Root mean square of successive RR interval differences
hrv_sdsd Standard deviation of successive RR interval differences
hrv_pnn50 Percentage of successive interval pairs that differ >50 ms
hrv_pnn20 Percentage of successive interval pairs that differ >20 ms

ACC

acc_avg Average physical activity intensity during the class
acc_std Standard deviation of physical activity intensity in class
acc_dtw_t Dynamic time wraping distance with teacher
acc_dtw_s* Dynamic time wraping distance with average value of students
acc_pcc_t Pearson correlation coefficient with teacher
acc_pcc_s* Pearson correlation coefficient with average value of students

ST sktemp_avg/max/min Average/maximum/minimum value of skin temperature
CO2 mean/max/min_co2 Average/maximum/minimum value of CO2
TEMP mean/max/min_temp Average/maximum/minimum value of indoor temperature
HUMID mean/max/min_co2 Average/maximum/minimum value of humidity
SOUND mean/max/min_temp Average/maximum/minimum value of sound

the low-frequency band (0.04-0.15 Hz) and high-frequency band (0.15-0.4 Hz). Besides, we compute the ratio of
LF-to-HF power which reflects the overall balance of the ANS [67].

5.3 Accelerometer-based Features
Student behaviour can be inferred from ACC data, which helps us know more about student participation (e.g.,
team activities) and engagement level in class [95]. For ACC data, we extract features such as the average physical
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activity and standard deviation, which describes the statistical characteristics of the student movement during
the class. Inspired by [95], we propose the movement synchrony features such as the DTW/PCC between the
target student and the average values of the other students.

5.4 Other Features
Student learning engagement has been found to be affected by the thermal comfort level of students in the
classrooms [50], which is influenced by many factors such as indoor temperature, humidity, skin temperature,
sound, CO2 level, etc [25, 38, 69, 76]. Therefore, statistical features are calculated for indoor temperature, CO2,
sound and humidity, as the overall estimate of the indoor environment during a class. For ST data, statistical
features are extracted to estimate the general arousal of student engagement. According to [51], when CO2 level
is higher than 1000 ppm, occupants may complain about the drowsiness and poor air, and when CO2 level is
higher than 2000 ppm, occupants will feel sleepy, headaches and lose attention. Therefore, the above features are
selected to study student engagement.

6 PREDICTION PIPELINE
Although engagement prediction is usually regarded as a classification problem, where engagement level can be
divided into two or three categories [27, 49] based on specific thresholds, it is not a good practice to determine
people’s psychological characteristics using classification [39]. In this paper, we choose regression rather than
classification for multidimensional engagement prediction. In order to predict multidimensional engagement
scores of students, we set up a regression-based pipeline as described below.
Engagement Score: We assign each student a score for each item in the self-report survey. To achieve this,

we first reverse the responses in item 2 and item 4, as shown in Table 4. Then, we calculated a score based on
the average of the 5-point Likert scale for each dimension of engagement and the overall engagement. Then we
rescale the calculated score to 1 to 5, representing the engagement level being low to high. Figure 5 shows the
calculated overall engagement score for 23 student participants. To save space, we do not display box plots of the
distribution of the single-dimensional engagement score.
Regressors: We adopt LightGBM Regressor [52, 84] to predict self-reported multidimensional engagement

scores. As one of the most powerful prediction models, LightGBM is an ensemble method combining a set of
weak predictors (i.e., regression trees) to make accurate and reliable predictions. It builds the regression tree
vertically (leaf-wise) while other algorithms grow trees horizontally (level-wise). It will choose the leaf with
max delta loss to grow. When growing the same leaves, LightGBM algorithm can reduce more loss than other
tree-based algorithms such as GBRT [28].
Validation: It is natural to use cross-validation to train and test prediction models when we are not in a

data-rich situation. The purpose of cross-validation is to estimate the unbiased generalization performance of
the prediction model. However, when using the test set for both model selection (hyperparameter tuning) and
model estimation, the test data may be overfitted, and the optimistic bias may occur in the model estimation.
Therefore, we adopt the nested cross-validation approach [66] with inner loop cross-validation nested in outer
loop cross-validation. The inner loop is used for hyperparameter tuning and feature selection, while the outer
loop is responsible for evaluating the performance on the test set. In the outer loop, similar to the previous human-
centred research [27, 47], we first divide the data into 𝑛 groups, where 𝑛 represents the number of participants,
i.e., 𝑛=23. Each group contains the data for only one participant. Then we apply k-fold cross-validation [96] (𝑘=5)
and on all student groups. Specifically, data from the same student (group) will not appear in the training and test
sets at the same time. In the inner loop, the remaining data groups are split into 𝐿 (𝐿=3) folds, where each fold
serves as a validation set in turn. Then we train (grid search) the hyperparameters on the training set, evaluate
them on the validation set, and select the best parameter settings based on the performance recordings over
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Table 6. Prediction performance for emotional, cognitive, behavioural, and overall engagement with all sensing data

Dimension MAE RMSE

LGBM. LR. Average Random LGBM. LR. Average Random
Emotional 0.675 0.714 0.747 1.059 0.851 0.878 0.928 1.326
Cognitive 0.906 0.921 0.977 1.288 1.113 1.128 1.176 1.658
Behavioural 0.783 0.811 0.871 1.235 0.960 0.980 1.135 1.540
Overall 0.602 0.614 0.641 0.891 0.753 0.769 0.792 1.125

𝐿 folds. We use the importance vector generated from LightGBM to reduce the feature dimensionality, which
calculates feature importance automatically by averaging the number of times a specific feature used for splitting
a branch. Higher values indicate higher feature importance. Top-10 features are selected as the new input features
to the LightGBM regressor. The heuristic of choosing 10 features is we find that the prediction error is lowest
under this threshold in the experiment.
Similar to [27, 94], we also perform leave-one-subject-out (LOSO) [36] validation to evaluate the impact of

data from individual participant on the overall prediction error. For both 𝑘-fold and LOSO validation approaches,
we calculate the average performance score (i.e., MAE and RMSE) of the regressor in each iteration.

Baselines and Metrics: We compare the proposed engagement prediction model with three baselines. The
first baseline is the standard linear regressor [81], one of the most widely used regression models. The second
baseline takes the average score of each dimension of engagement. The third baseline randomly generates a
sample from the distribution of engagement scores and regards it as a predicted value. Similar random baselines
have been widely used in previous ubiquitous computing studies such as [27, 94]. To evaluate the prediction
performance of the proposed model, we use the Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) [18] metrics.

7 RESULTS AND DISCUSSION
In this section, we conduct extensive experiments to evaluate the prediction performance of n-Gage. We answer
the first research question ’Can we measure the multiple dimensions of high school student’s learning engagement
including emotional, behavioural and cognitive engagement in high schools with sensing data in the wild? ’ in Section
7.1. We answer the second research question ’Can we derive the activity, physiological, and environmental factors
contributing to the different dimensions of student learning engagement? If yes, which sensors are the most useful in
differentiating each dimension of the engagement?’ in Section 7.2. We also study how different settings can help
improve the performance of n-Gage. Unless otherwise stated, the prediction models are built with LightGBM
regressors using all sensors and evaluated by 𝑘-fold nested cross-validation by default.

7.1 Overall Prediction Results
We first evaluate the overall prediction results for n-Gage with all sensors available. Table 6 displays MAE and
RMSE scores of n-Gage’s engagement regression in different dimensions. In particular, the overall engagement is
calculated by the average of engagement scores from all questions related to the engagement, which is commonly
used in previous engagement studies [27, 34, 49]. From Table 6, we can see that in terms of MAE and RMSE, n-Gage
achieves higher prediction performance for all dimensions of engagement than all baselines, demonstrating its
potential for multidimensional engagement prediction.

Notably, among each dimension of engagement, n-Gage works best on predicting emotional engagement. The
emotional engagement regression model obtain 0.675 of MAE and 0.851 of RMSE, which is lower than 0.384
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Fig. 5. Box plot of the overall engagement scores for 23 student participants. The red dashed line represents the average score
for all participants. The participant ID shown in the figure is randomly generated to maintain the privacy of participants.
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Fig. 6. Prediction error for overall engagement scores for 23 student participants

(36.26%) and 0.475 (35.82%) of the random baseline. The reasons why n-Gage predicts emotional engagement best
are possibly two-fold: (1) compared with cognitive and behavioural engagement, emotional engagement is most
suitable for evaluation through self-report surveys [34], resulting to a more realistic and stable student emotional
engagement measurement (ground truth). (2) emotional engagement is more easily detected by sensors (e.g., EDA
and PPG) as it reflects the degree of emotional arousal, thereby producing fluctuations in physiological signals
[7, 27, 53].
Although the MAE of cognitive engagement regression is higher than other models, it is still lower than

random baseline of 0.382 (29.66%) in MAE and 0.545 (32.87%) in RMSE. The possible reason is that cognitive
engagement is more challenging to be assessed by the wearable and indoor sensors than electroencephalography
(EEG) sensors [9]. By contrast, n-Gage has the lowest prediction error of 0.602 in MAE and 0.753 in RMSE in
overall engagement assessment. According to the education research [34, 35], although the multidimensional
concept of engagement has been well accepted, the definitions of three dimensions of engagement vary with
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Table 7. The most influential features on multidimensional engagement.

Engagement Association Most influential features

Emotional Engagement (+) acc_pcc_s, tonic_a_p, eda_pcc_s
(-) acc_avg*, sktemp_avg*, eda_dtw_t

Cognitive Engagement (+) intemp_min*, level_1, hrv_ratio_lf_hf
(-) acc_pcc_s*, co2_max, acc_std

Behavioural Engagement (+) acc_std, acc_pcc_s, eda_pcc_avg
(-) sktemp_avg*, acc_pcc_t*, acc_dtw_t

Overall Engagement (+) level_1, tonic_a_p, intemp_max
(-) acc_dtw_t*, sktemp_avg, acc_avg

* indicates p-value < 0.01.

considerable overlap across components. Therefore, the overall engagement is easier to be evaluated and predicted
than the single-dimensional engagement.
We also compare the prediction results with when a standard linear regressor is learned. From Table 6, the

linear regression model has much higher prediction performance than both average and random baseline models
(e.g., 31.09% lower than random baseline model in MAE for overall engagement prediction), indicating the
effectiveness of extracted features in engagement prediction. However, the performance of linear regressors
is not comparable to the LightGBM in all dimensions. This is because LightGBM has a good ability to capture
non-linear feature-target relationships which is more flexible than simple linear regressors. To summarize, we
believe that the performance of n-Gage is benefited from both the extracted features and powerful non-linear
mapping provided by the LightGBM.
We then discuss the impact of data from the individual participant on the overall prediction error. We train

and test the regressors using the LOSO validation approach which enables us to evaluate the ability of models
to accurately predict a new participant not included in the training set. Figure 6 shows the boxplot of absolute
prediction error per participant. Interestingly, each participant has a very different error distribution. For instance,
participants 8 and 16 have the highest median value (1.492 and 1.082) and standard deviation (0.801 and 1.132) of
prediction errors. From Figure 5, we observe that both participants have a much lower engagement level than the
others. Since the regression model is built on the data from all the other participants, it does not work well when
the participant (testing set) has a different distribution from the training set. The potential solution is to build
participant-wise or groupwise prediction models, as introduced in [70]. In conclusion, we believe the prediction
errors come from both the specific participants and overall prediction bias. We will further investigate this issue
in future research.

7.2 Impact of Sensor Combinations
We will explore the physiological, activity and environmental factors contributing to the different dimensions
of student engagement. We compute the Pearson Correlation Coefficient (PCC) between the extracted features
and multiple dimensions of engagement, and then list the three most influential features in Table 7. We find
many EDA features related to the peaks of tonic EDA signals and physiological synchrony are related to the
multidimensional engagement. In previous research, EDA features are generally considered as a good indicator
of physiological arousal (e.g., emotional and cognitive states) [12, 23], which have been explored in the detection
of engagement [27, 47, 55]. For the HRV features (e.g., ’hrv_ratio_lf_hf’), they are shown to be correlated with
cognitive engagement as HRV is an autonomically dependent variable and has been used to predict student
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Table 8. Summary of the Prediction performance of multidimensional engagement using different sensor combinations.
X1 indicates all the wearable data including EDA, HRV, ACC and ST data, and X2 means the indoor environmental data
including CO2 and temperature data.

Data source MAE/RMSE

Emotional Cognitive Behavioural Overall

EDA 0.697/0.877 0.948/1.149 0.851/1.019 0.637/0.800
HRV 0.714/0.901 0.940/1.140 0.833/1.002 0.659/0.812
EDA+HRV 0.699/0.875 0.949/1.151 0.841/0.989 0.621/0.783
EDA+ACC 0.679/0.860 0.914/1.124 0.816/0.987 0.626/0.789
HRV+ACC 0.691/0.875 0.910/1.125 0.809/0.979 0.641/0.796
EDA+HRV+ACC 0.679/0.860 0.909/1.122 0.800/0.965 0.620/0.778
X1* 0.673/0.851 0.910/1.126 0.811/0.980 0.619/0.775
X1+ X2* (all) 0.675/0.851 0.906/1.113 0.783/0.960 0.602/0.753

* indicates the proposed combination of features for engagement prediction.

engagement in [63]. Similar to EDA and HRV features, we notice that the average skin temperature (’sktemp_avg’)
are negatively correlated with engagement, as ST reflects the sympathetic nervous activity and attention states
[3] which has been used for mind-wandering prediction [11] and stress detection [46].
For activity factors, it is interesting to find that many ACC features are highly correlated with engagement.

Accelerometer is a popular and powerful sensor for quantifying human behavioural patterns [39, 93]. ACC
features have been utilised to sense audience engagement using interpersonal movement synchrony [95]. In
the experiment, we observe that the average physical intensity during class is highly negatively correlated with
emotional engagement. This leads us to believe that when students are negatively engaged, they tend to perform
more physical movements in the class. As for environmental factors, we find that the maximal CO2 level is
negatively associated with cognitive engagement, while the indoor temperature is positively associated with
engagement. This may be because CO2 has a negative impact on people’s cognitive load [45, 80], and then affects
student cognitive engagement. This result highlights the need to ventilate the classroom timely to keep students
engaged. Interestingly, we notice that the maximal indoor temperature in the class is positively correlated with
overall engagement. One possible explanation is that during the data collection period (winter and spring), the
indoor temperature is low and moderately higher indoor temperature makes students feel thermally comfortable
[69] and therefore more engaged in learning [50].

Then we investigate the most useful sensors in predicting each dimension of student engagement and explore
the performance of n-Gage when only a set of sensors available. In this research, we use E4 wristbands and
Netatmo indoor weather stations for student engagement assessment. However, when other schools want to
generalize the system for automatic engagement measurement, it is likely that only a few sensors available
considering the types of wearables and installation of indoor weather stations. In this experiment, we use different
combinations of sensors as shown in Table 8 to train the regressors, where X1 indicates all the wearable sensors
including EDA, HRV, ACC and ST, and X2 represents all the environmental sensors containing CO2, TEMP,
HUMID and SOUND sensors. Besides, we predict student engagement using only EDA as in [27], single PPG
(HRV) as in [37], and EDA+HRV as in [49]. Since accelerometers are naturally available in wearables and have
been used for engagement measurement [95], we add ACC to the above sensor combinations for the first time.
Then we utilise all wearable sensors and indoor sensors for more accurate engagement prediction.
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Table 9. Multidimensional Engagement Regression Result for Different Subjects

Subject MAE/RMSE
Emotional Cognitive Behavioural Overall

Maths 0.686/0.841 0.841/0.965 0.750/0.891 0.603/0.738
English 0.609/0.779 0.893/1.010 0.694/0.819 0.510/0.629
Language 0.645/0.814 0.829/0.903 0.799/0.900 0.593/0.758
Science 0.646/0.829 0.895/0.941 0.758/0.856 0.575/0.720
Politics 0.674/0.835 0.947/1.057 0.660/0.731 0.525/0.671
Average 0.652/0.820 0.881/0.975 0.732/0.839 0.561/0.703

For each sensor combination, we use nested cross-validation to train and test the regressors as described in
Section 6, to achieve optimal feature selection and parameter tuning. Table 8 displays the regression result with
different sensor combinations. Different combinations are useful for different dimensions of engagement. For
instance, a single EDA sensor works well for emotional engagement prediction while less useful in predicting
behavioural engagement unless involving ACC together. This is reasonable because EDA is a reflection of
emotional arousal, while ACC is capable of quantifying human behavioural patterns [39, 93]. On the other hand,
the combination of EDA and HRV sensors has similar prediction performance compared to using a single EDA
sensor, which is consistent with the fact that not many HRV features are highly correlated with engagement. When
there is no EDA sensor (especially in commercial off-the-shelf smart wristbands), the HRV+ACC combination can
achieve similar prediction performance on cognitive and behavioural engagement compared to EDA+HRV+ACC.
Meanwhile, it can be observed that the combination of all wearable sensors (X1) has the lowest prediction

error for emotional engagement. When considering wearable sensors (X1) with indoor sensors (X2), n-Gage can
achieve the best performance on the behavioural, cognitive and overall engagement, and has similar prediction
performance in emotional engagement with X1. The underlying reason is that CO2 and indoor temperature
mainly affect students’ cognition load and behavioural patterns. For example, students may lose attention (related
to behavioural engagement), sleepy (related to cognitive engagement) [51] during class when the CO2 level is too
high (e.g., larger than 2000 ppm), but this does not necessarily mean that students do not like the class (related to
emotional engagement). The above results illustrate the importance of taking indoor environmental changes into
account for student engagement prediction and creating the optimal environment to keep students engaged in
class.

7.3 Impact of Class Subjects
Now, we investigate whether considering different school subjects could improve the prediction performance
of n-Gage. Our assumption here is that different subjects may lead to different learning requirements, thinking
styles and emotional preferences. Then, student engagement levels and physiological status may be affected
accordingly.
To validate this hypothesis, we establish regression models for each subject (i.e., Language, Maths, Science,

English, PE, Politics, Health, Chapel) to isolate differences in class subjects and engagement assessment. Table 9
summarizes MAE and RMSE scores of the regressors over different subjects. We do not consider the Health,
Chapel and PE classes because the number of survey responses are limited (less than 30) in those classes which
may affect the prediction performance. We also compare the average prediction performance of 5 regression
models (i.e., Maths, English, Language, Science, Politics) with the general regressor model in Figure 7. The results
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Fig. 7. Prediction performance for the average subject model and general model
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Fig. 8. Engagement scores on different subjects

indicate that, compared with building the general regression model including all subjects, building regression
models by school subjects can significantly improve the prediction performance.
To better understand the underlying cause behind the improved regression performance, we review the self-

reported engagement scores. Figure 8 shows that students have very different multidimensional engagement scores
among different subjects. For instance, while students have the highest behavioural and emotional engagement
score in English class, they have the highest cognitive engagement score in Maths class. The possible reason
is that students enjoy English classes most and thus like to follow the rules from English teachers. Due to the
fact that Math know-how is cumulative and usually contains complex concepts, students may tend to put more
effort to comprehend the contents in Maths class, thus leading to a high cognition engagement score. Overall,
these observations serve as evidence that building models for each subject can lead to significantly improved
prediction performance.

7.4 Discussion
We have shown that it is possible to infer multidimensional student engagement by using multiple wearable and
environmental sensors. Meantime, we will present the following interesting discussion points.
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Fig. 9. Engagement scores with different class time and thermal comfort

• Engagement and class time. A preliminary study is conducted to investigate the correlation between
self-reported student engagement and class time during the school day. Figure 9(a) shows the average
engagement scores for the different class time (morning, noon and afternoon). Overall, we observe that
classes in the noon show higher engagement levels in all dimensions. Classes in the afternoon (after lunch)
have the lowest engagement score, especially in the behavioural and emotional dimensions. Particularly,
it is interesting to notice that students have a much higher behavioural and emotional engagement level
than the cognition level despite the time of the classes. These observations provide directions for further
research in maximizing student engagement by a more reasonable arrangement of class schedule according
to the nature of each course.

• Engagement and thermal comfort. In the background survey, most students agree that ’When I am
engaged in class, I could get distracted when the room is too hot or too cold’ (see Section 3.2.2). As another
investigative point, Figure 9(b) shows the relationship between self-reported engagement and thermal
preference (i.e., warmer, cooler, no change) [25] of the students in class. The results show that students
who feel the room thermally comfortable have a higher overall engagement level compared to other groups.
In particular, students who prefer a cooler environment usually have the lowest cognition engagement.
This reminds us that creating the right thermally comfortable environment is necessary to improve student
engagement in class, especially considering the individual differences in thermal sensation [30].

• Real-time measurement. Students’ engagement level during a class may vary with the learning con-
tent and teaching style. Real-time anonymous engagement tracking can provide teachers with student
engagement level and help teachers understand the impact of different teaching contents on student
engagement, thereby better adjusting teaching speed and teaching methods. However, the challenge is how
to obtain the fine-grained ground truth of student engagement multiple times during the class without
disturbing students’ studying. One potential approach is ecological momentary assessment (EMA) [53]
which repeatedly prompts students to report their engagement level. Though EMA is usually considered
a good method of in situ data collection, if students need to answer EMA, they may be disturbed and
distracted in class. Overall, ground truth data collection is challenging and more reliable methods need to
be investigated.

8 IMPLICATIONS AND LIMITATIONS
This research addresses the possibility of automatically predicting students’ in-class emotional, behavioural and
cognitive engagement using wearable and indoor sensing technology, which provides opportunities for the future
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design of feedback systems in the classroom. The feedback system has the potential to benefit both teachers and
students.
Teacher plays an important role in influencing student engagement [34]. With the feedback from students

after each class, teachers can evaluate, and, if necessary, adapt or change teaching strategies (e.g., increase time
for student thinking, allow students time to write, assign reporters for small groups [89]) for creating the right
learning climate to keep students engaged [44]. For instance, when teachers focus more on academics and fail to
create a positive social learning environment, students are likely to be emotionally disengaged and worried about
making mistakes. Contrarily, when teachers focus more on the social dimension and neglect the intellectual
dimension, students possibly experience low cognitive engagement for learning [34, 88]. With such a feedback
system, teachers can observe multidimensional student engagement and create the intellectually challenging and
socially supportive learning environment.
Further, if this system is deployed, using n-Gage, teachers can take timely measures to improve learning

experience for students, such as planning learning schedules, re-engaging students with the low engagement,
and ventilating the room to let the fresh air in. While overcoming student disengagement is complicated, we do
believe teachers can benefit from the engagement feedback of students after every class instead of few times in a
term [17, 27], contributing to higher student achievements and protecting students from dropping out of school
[34].

Students wearing wristbands are able to self-track their multidimensional in-class engagement, which positively
influences academic achievements and is usually regarded as the predictor of learning outcomes [20, 34, 58].
Being conscious of in-class engagement is an effective quantified-self [29, 77] approach to promote self-regulation
and reflective learning [10] for students. Once students are aware of how much effort they are putting into
learning, they can work towards their personal goals by optimizing their study practices and learning strategies
(e.g., practice active listening and thinking, make study plans for different subjects) [6, 29]. Additional strategies
such as gamification [13, 24] can also be deployed along with n-Gage measurements.
For real-world deployments, the feedback system can still work when only a subset of sensors available (see

Section 7.2). For instance, when there are no indoor sensors installed, wearable sensors can be used for accurate
engagement prediction especially for the emotional engagement. The system can also allow more sensors to be
integrated in the future when becomes available.
The current studies have some limitations that needed to be addressed in future research. Firstly, collecting

data from more student participants in the same class may bring new opportunities for data analysis. There are 59
Year 10 students in total, but only 23 students voluntarily become participants and wear wristbands. Compared to
students who did not participate, participants may share some similar personality traits and have higher potential
to engage in class most of the time.

Secondly, we agree that collecting the ground truth of student engagement is challenging because we need to
find a compromise between taking long psychological surveys for more accurate measurement and enabling
students to complete surveys faster without affecting their study or rest. Therefore, a more robust way of
evaluating multidimensional student engagement needs to be investigated in the future.
Thirdly, the quality of survey responses varies. Online surveys are conducted 3 times a day, and the total

response rate is 35.3%. Since completing surveys multiple times a day may become a burden, students are likely to
answer the questions unseriously. Therefore, in this study, we only encourage rather than urge them to complete
the survey, which to a certain extent guarantees the quality of responses. Figure 10 shows the survey completion
time for all responses from participants. Most participants complete the survey in 30 to 50 seconds, but some
participants complete the survey in less than 15 seconds. Though the survey completion time may be affected
by many factors and varies from person to person, it is still one of the indicators of response quality [57]. In
future research, it will be interesting to explore patterns from survey completion time data and assign appropriate
weights to survey response for more accurate prediction of student engagement.
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Fig. 10. Survey completion time for different participants. Each point represents the survey completion time for one response.

During the in-situ data collection, the data recorded by the wristband is not always continuous. For many
reasons, we face a considerable loss of data: (1) on each school day, an average of 2 to 4 participants got sick
leave and cannot wear a wristband; (2) 6 participants went abroad to a study program on the second week of data
collection; (3) students were curious about the wristbands, especially in the first few days, and they pressed the
button again and again out of curiosity. Some students accidentally closed their wristbands, so their data was lost
for hours or even the whole day.

Though significant efforts have been made to make the maximal use of the collected data, 32.17% traces must
to be removed from the analysis due to the loss of survey data, the incomplete data during the class, the presence
of long-time of flat responses, artifacts and quantization errors as discussed in Section 4. Despite the fact that
we have cleaned and pre-processed wearable data to eliminate noises, collecting physiological data in the wild
still faces huge challenges, especially for young students. In our research, one of the main noise is from the poor
contact between the sensors and skin, which can be fixed by tightening the wrist strap to the skin. However, this
will also increase awareness of wristband during class, resulting in student in-class disengagement and even
more motion artifacts.

9 CONCLUSION AND FUTURE WORK
In this research, we propose n-Gage, an engagement sensing system that can capture students’ physiological
responses, physical movements, and environmental changes to infer multidimensional engagement (behavioural,
emotional and cognitive engagement) level in class. We evaluate the system by combining weather station data
and wearable data collected from 23 Year 10 students and 6 teachers over 144 classes in 4 weeks in a high school.
Some new features are proposed to characterize different aspects of student engagement. Extensive experiment
results show that n-Gage can predict student behavioural, emotional and cognitive engagement score (1 is the
lowest score and 5 is the highest score) with an average MAE of 0.788 and RMSE of 0.975. We further demonstrate
the most influential features and how different sensor combinations/school subjects affect student engagement.
Finally, we show some interesting findings that the maximal CO2 level is highly negatively correlated with
student cognitive engagement; class time (morning, noon and afternoon) and thermal preference (warmer, cooler
or no change) may affect the level of student engagement, which provides beneficial insights for educators and
school managers to improve student learning engagement in high school.
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Though not perfect, we believe that n-Gage is still a very promising first-step towards multidimensional in-class
engagement tracking for students. As a contribution, n-Gage can indicate the future design of feedback system,
assisting students and teachers in a variety of ways (e.g., promoting students’ self-regulation and reflective
learning, helping teachers create a right learning climate for students). In the future, we plan to involve more
participants of different ages from different schools in data collection. The expansion of the dataset will help
us get better and more precise results. Also, we hope to investigate more factors that may affect students’
multi-engagement, such as personality, mood and behavioural habits.
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