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A B S T R A C T

The HVAC (Heating, Ventilation and Air Conditioning) system is an important part of a building, which
constitutes up to 40% of building energy usage. The main purpose of HVAC, maintaining appropriate thermal
comfort, is crucial for the best energy usage. Additionally, thermal comfort is also important for well-being,
health, and work productivity. Recently, data-driven thermal comfort models have achieved better performance
than traditional knowledge-based methods (e.g. the predicted mean vote model). An accurate thermal comfort
model requires a large amount of self-reported thermal comfort data from indoor occupants which undoubtedly
remains a challenge for researchers. In this research, we aim to address this data-shortage problem and boost
the performance of thermal comfort prediction. We utilize sensor data from multiple cities in the same climate
zone to learn thermal comfort patterns. We present a transfer learning-based multilayer perceptron model from
the same climate zone (TL-MLP-C*) for accurate thermal comfort prediction. Extensive experimental results on
the ASHRAE RP-884, Scales Project and Medium US Office datasets show that the performance of the proposed
TL-MLP-C* exceeds the performance of state-of-the-art methods in accuracy and F1-score.
1. Introduction

Recently, Internet of Things (IoT) devices have been widely used in
urban environments. In addition, sensors have become the backbones
of smart cities that enable spatial and situational awareness of real-
time dynamic phenomena, e.g., pedestrian movement [1], parking
events [2], and energy consumption [3,4]. As one of the most impor-
tant parts of cities, buildings account for approximately 40% of the
global energy usage and 60% of the worldwide electricity usage [5].
Large proportions of these usages are contributed by buildings’ HVAC
systems [6]. The main goal of the HVAC system is to maintain the
indoor occupant comfort at minimal energy usage. To achieve overall
satisfaction with an indoor environment, thermal comfort is considered
to be the most influential factor compared with visual and acoustic
comfort [7].

Thermal comfort is the state of mind that expresses satisfaction
with the thermal environment [8]. Thermal discomfort not only affects
occupant productivity, work performance and engagement [9,10], but
it also has a negative influence on lifelong health. Hence, it is important
to maintain a thermally comfortable environment for the well-being
of occupants while minimizing buildings’ energy usage. A crucial step
towards this goal is to create an accurate model for thermal comfort.
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The Predicted Mean Vote (PMV) model proposed by Fanger et al. [11]
developed with principles of human heat balance and adopted by the
ASHRAE Standard 55, is one of the most prevalent models. It relates
the thermal comfort scale with six different factors (see Fig. 1).

However, some researchers revealed the discrepancy between the
thermal sensation vote reported by occupants and the predicted mean
vote [12]. This discrepancy is likely because a variety of parameters
such as time factors (e.g., hour, day, and season) [13,14], personal
information (e.g., heart rate, age, and gender) [15], environmental fac-
tors (e.g., colour, light, and outdoor climates) [16], culture (e.g., dress
code and economic status) [17], short- and long-term thermal expo-
sure [14], etc. may affect thermal comfort. Therefore, a data-driven
method is a better choice than the traditional PMV model since more
parameters could be utilized to improve the performance of thermal
comfort prediction.

Some researchers have applied data-driven machine learning tech-
niques for thermal comfort prediction for a specified group of peo-
ple. However, it is usually difficult to obtain sufficient labelled data,
which limits the performance of data-driven models. Recently, various
thermal comfort studies have been conducted worldwide; and several
databases, including databases covering multiple cities and climate
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Fig. 1. Six factors affecting thermal comfort (PMV model).

ones, are currently available online (see Section 3). Since the sensor
ata inferred from different cities may have very divergent patterns
aused by building materials, construction requirements and climate
hanges, previous research has mainly focused on investigating how
eople living in specific cities react to their thermal environment
e.g., the hot-arid climate in Kalgoorlie-Boulder, Australia [18] and the
umid subtropical climate in Brisbane Australia [19]).

We aim to explore whether we can utilize sensor data from multiple
ities to benefit a target building. We hypothesize that the performance
f thermal comfort modelling can be boosted by conducting transfer
earning using data from multiple cities. Therefore, we wish to answer
he following research questions: Can we predict occupants’ thermal
omfort accurately by learning from multiple buildings in the same climate
one when we do not have enough data? If so, which features contribute the
ost to effective thermal comfort transfer learning?

In this research, we present the transfer learning-based multilayer per-
eptron (TL-MLP) model and transfer learning-based multilayer perceptron
rom the same climate zone (TL-MLP-C*) model for predicting occupants’
hermal sensation with insufficient labelled data. ASHRAE RP-884 [11]
nd the Scales Project [20] are chosen as the source datasets, and
he Medium US Office [21] is used as the target dataset. Extensive
xperiments on these three public databases show that the proposed
hermal comfort models outperform the popular knowledge-driven and
ata-driven models. To summarize, the contributions are as follows:

• To the best of our knowledge, we are the first to transfer the
knowledge from similar thermal environments (climate zones)
to a target building for effective thermal comfort modelling. We
propose the TL-MLP and TL-MLP-C* thermal comfort models and
confirm that the thermal comfort sensor data from multiple cities
in the same climate zone can benefit the small thermal comfort
dataset of a target building in another city, with insufficient
training data.

• Extensive experimental results show that the proposed TL-MLP
and TL-MLP-C* models outperform the popular knowledge-driven
and data-driven models for thermal comfort prediction and can
be implemented in buildings without adequate thermal comfort
labelled data.

• We identify the significant feature sets for effective thermal com-
fort transfer learning. We also find that the combination of age,
gender, outdoor environmental features and the six factors from
the PMV model can lead to the best prediction performance for
transfer learning-based thermal comfort modelling.

. Related work

First, we list the previous literature for traditional thermal comfort
odelling methods and transfer learning applications. Then, we discuss
2

he current gaps and identify the advantages of this work.
2.1. Traditional thermal comfort modelling methods

The PMV model developed by Fanger et al. [11] and adaptive model
developed by De Dear et al. [19] are the most famous knowledge-
driven thermal comfort models. The adaptive model is based on the
idea that occupant can adapt to different temperatures at different
times and that outdoor weather affects indoor comfort. Occupants
can achieve their comfort through personal adjustments such as cloth-
ing changes or window adjustments [22]. Clear et al. [23] explored
how adaptive thermal comfort could be supported by new ubiquitous
computing technologies. They noted that IoT sensing technologies can
help build a more sustainable environment where people are more
active in maintaining and pursuing their thermal comfort, which is less
energy-intensive and less tightly controlled.

In recent years, data-driven thermal comfort modelling has become
increasingly more popular and huge efforts have been made to ap-
ply machine learning to thermal comfort modelling [15,24–29]. Ran
et al. [24] used rotation forests to predict occupants’ thermal com-
fort using thermographic imaging information. Similarly, Ghahramani
et al. [25] used a hidden Markov model (HMM) based method to
predict thermal comfort using the infrared thermography of faces.
Chaudhuri et al. [15] established a random forest-based model for dif-
ferent genders using physiological signals (e.g., skin conductance and
blood pressure). However, all the thermal comfort models mentioned
above require the installation of additional devices (individual thermal
cameras, smart eyeglasses, and physiological sensors) and may lead to
privacy concerns.

The performance of traditional machine learning algorithms on
thermal comfort prediction has been discussed in [26]. Researchers
compared nine widely used machine learning algorithms for thermal
sensation prediction using the ASHRAE Comfort Database II. They
found that ML-based thermal sensation prediction models generally
have higher accuracy than traditional PMV models and that the random
forest has the best performance compared to other ML algorithms.

As the non-traditional machine learning algorithms, artificial neural
networks have been increasingly used in thermal comfort modelling.
Ferreira et al. [27] controlled an HVAC system to achieve the de-
sired thermal comfort level and energy savings. They applied several
neural network models to calculate the PMV index for model-based
thermal comfort prediction. Hu et al. [28] implemented a black-box
MLP neural network for thermal comfort modelling, which obtained
better prediction performance than the PMV model and traditional
white-box machine learning models. Compared to most previous re-
search using a coarse-grained neural network architecture (link input
attributes and thermal comfort score directly), Zhang et al. [29] used
the MLP neural network to model the relationship between control-
ling building operations and thermal comfort factors. Their proposed
fine-grained DNN approach for thermal comfort modelling outper-
forms the coarse-grained modelling and other popular machine learning
algorithms.

2.2. Transfer learning applications

Although great contributions have been made to improve the pre-
diction accuracy of thermal comfort through various machine learning
techniques, there is still a main bottleneck for data-driven thermal
comfort modelling — the accessibility of sufficient thermal comfort
data. Transfer learning allows researchers to learn an accurate model
using only a tiny amount of new data and a large amount of data from
a previous task [30].

Transfer learning has been applied to many real-world applica-
tions involving image/video classification, natural language processing
(NLP), recommendation systems, etc. For instance, transfer learning
has been used for children’s Automatic Speech Recognition (ASR)

task [31]. Researchers learn from adult models to child models through
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Fig. 2. Locations of different studies in ASHRAE RP-884 database, The scales project database and Medium US Office dataset. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
a Deep Neural Network (DNN) framework. They investigated the trans-
fer learning techniques between adult and child ASR systems in acoustic
variability (layers near the input) and pronunciation variability (layers
near the output), updated both the top-most and bottom-most layers
and kept the rest of the layers fixed.

Some existing work has focused on transfer learning using sensor
data. Wang et al. [32] proposed a transfer learning based-framework
for cross-domain activity recognition. First, they used the majority
voting technique to obtain the pseudo label of the target domain.
Intraclass knowledge transfer was interactively performed to convert
two domains into the same feature subspace. Then, the labels of the
target domain can be ignored by the second annotation. Ye et al. [33]
learned human activity labels by leveraging annotations across multiple
datasets with the same feature space, even though the datasets may
have different sensing deployments, sensing technologies and different
users.

Recently, a transfer active learning framework was proposed to pre-
dict thermal comfort [34]. They considered thermal comfort prediction
as inductive transfer learning where labelled data are available in both
source and target domains but users do not have access to all labelled
data in the target domain. They used the parameters transferred from
the source domain to the target domain. The biggest disadvantage of
their method is that they assume the feature spaces in both domains
must be the same, which is not applicable in daily life as there may be
unique useful features in the target dataset.

Similarly, Hu et al. [35] adopted transfer learning for thermal
comfort modelling and assumed that the feature space of the source
domain is a subset of that of the target domain. They connected the
classifiers from the source domain and target domain and then built a
new classifier to obtain knowledge from the source domain; however,
they did not explain why the network structure works well. Besides,
they trained the thermal comfort model for a lab study and learned
knowledge from the data from buildings all over the world in the
ASHRAE RP-884 dataset, but they did not consider the differences in
the thermal environments in different climate zones.

Overall, there are several advantages of our work: (1) We are
the first to transfer the knowledge from similar thermal environments
(climate zones) to the target building for effective thermal comfort
modelling. Most previous research has focused on building a thermal
comfort model for one target building [15,24–29]. Although a few
researches [35] have started to use transfer learning for building ther-
mal comfort models, their target datasets are collected from laboratory
studies and do not consider the influences of different climate zones.
(2) Unlike some research that uses data collected from laboratory
studies [15,24,25,35], we build thermal comfort models using data
3

from field studies in both the target and source domains, which is much
more meaningful in real-world scenarios. (3) Compared with some
research utilizing additional devices (e.g., thermal cameras in [24],
eyeglasses in [25], and wristbands in [35]), our research is easier and
cheaper to conduct, and better protects the privacy of occupants.

3. Data sets introduction

3.1. Overview

ASHRAE RP-884 Database [8] is one of the most popular public
databases for human thermal comfort study, which has been used in
numerous previous research [36–39]. ASHRAE RP-884 dataset was
initially collected to develop De Dear’s adaptive model, involving
more than 25,000 observations collected from 52 studies and 26 cities
over different climate zones all over the world. We adopt this public
database as one of the source datasets in our research.

The Scales Project Dataset [20] is published in 2019 which con-
tains thermal comfort responses from 57 cities in 30 countries for
8225 participants. This dataset aims at exploring participants’ thermal
comfort, thermal sensation, thermal acceptances and to investigate the
validity of assumptions regarding the interpretation of responses from
the survey. This public dataset is used as one of the source datasets in
the research.

Medium US Office Dataset [21] developed by Langevin et al. [21]
is a popular dataset used by recent thermal comfort studies [29,40].
It collected data from 24 participants (16 females and 8 males) in the
Friends Center Office building in Philadelphia city, USA. Longitudinal
thermal comfort surveys are distributed online 3 times daily (morning,
mid-day and afternoon) for a continuous 2-week period in each of
the four project seasons between July 2012 and August 2013. Data
types vary from daily surveys to sensor data including but not limited
to the indoor air temperature, air velocity, relative humidity, CO2
concentration and illuminance. This public dataset is used as the target
dataset in the research.

The locations of all cities with data used in the study are displayed
in Fig. 2. The red points represent the 26 cities in the ASHRAE RP-884
database, the blue points indicate the 57 cities in the Scales Project
dataset, and the green point indicates Philadelphia in the Medium US
Office dataset. In this research, we aim to learn the knowledge from
data in cities indicated by red points and blue points to benefit one
building in Philadelphia (green point).

Table 1 shows the basic information for the three datasets. The first
two datasets have different building types (HVAC, naturally ventilated

and mixed ventilated) while there is only one HVAC building in the
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Table 1
Information for source dataset and target dataset.

Dataset ASHRAE RP-884 The scales project Medium US office

Instances 25,623 8225 2497
Participants Unknown (48% M, 52% F) 8225 (53% M, 46% F) 24 (33% M, 67% F)
Indoor AT Range (C) 6.2 – 42.7 13.2 – 34.2 17.9 – 27.8
Indoor RH Range (%) 2.0 – 97.8 18.0 – 82.4 15.7 – 72.4
Indoor AV Range (m/s) 0.01 – 1.71 0.00 – 0.70 0.02 – 0.19
MR Range (Met) 0.64 – 6.82 N/A 1.00 – 6.80
CL Range (Clo) 0.04 – 2.29 N/A 0.21 – 1.73
Fig. 3. Distribution of thermal sensation over different datasets.

Fig. 4. Distribution of the indoor air temperature over different domains.

Medium US Office dataset. Since the ASHRAE and Scales datasets
include different climate zones all over the world, they have wider
indoor air temperature ranges than the Friends Center building in the
Medium US Office (17.9 ◦C–27.8 ◦C). Different from the first two
atasets, the Medium US Office dataset has much smaller groups of
articipants. Besides, the ranges of the indoor relative humidity (Indoor
H), indoor air velocity (Indoor AV), metabolic rate (MR), and clothing

evel (Clo) in the Medium US Office dataset are smaller than those in
he ASHRAE dataset.

.2. Preliminary analytics

Fig. 3 shows the distribution of thermal sensation for the ASHRAE
P-884 dataset, the Scales Project and the Medium US Office dataset.
ince the numbers of instances of the sensation scale for +3 (Hot)

and −3 (cold) are far less than those of the other instances in both
datasets, we merged +3 (hot) and +2 (warm) into one class, and −3
(cold) and −2 (cool) into one class. In the office environment, indoor
environmental factors such as temperature are generally maintained
at a relatively comfortable level (17.9 ◦C–27.8 ◦C in the Medium US
dataset), and people can also choose to adjust their clothing level and
behaviour (e.g., open the heater vents and have hot drinks) if they are
too cold or too hot.

Although the regression model is effective in many time-series
problems [2,41], the classification method still dominates the thermal
comfort area. Therefore, in this paper, we choose classifiers rather than
4

Fig. 5. Boxplots of thermal sensation and the indoor temperature.

regressors for effective thermal comfort prediction. Besides, based on
the previous discussion, thermal sensation scales are classified into 5
categories (i.e., cold or cool, slightly cool, neutral, slightly warm, hot
or warm).

The above three datasets have similar thermal sensation distribu-
tions, and occupants feel neutral towards the thermal environment
most of the time. We can observe that there are more responses for feel-
ing slightly warm or cool than feeling warm/cool or hot/cold, which
accords with our thermal comfort feelings in daily life. Meanwhile, the
thermal sensation distributions in the ASHRAE dataset and the Scales
Project dataset are more uniform than the distribution of the Medium
US Office dataset. This is because the ASHRAE dataset and the Scales
Project dataset consist of a variety of data from different climate zones
all over the world while the Medium US Office dataset includes data
from only one building.

Indoor air temperature is one of the most significant factors affect-
ing occupants’ thermal feelings. Fig. 4 shows the distribution of the
indoor air temperature for the three datasets. Most temperature values
range from 22 ◦C–24 ◦C. However, there are also some differences
between these three distributions. The ASHRAE and the Scales Project
datasets have higher indoor air temperatures because some thermal
sensation responses are from hot climate areas. In contrast, in the
Medium US Office dataset, the indoor temperature distribution seems
to be centred at approximately 20 ◦C to 27 ◦C.

From Fig. 5, we can see the relationship between the indoor air
temperature and thermal sensation scale. Usually, a higher indoor air
temperature indicates a higher thermal sensation scale for all three
datasets. Interestingly, in the Medium US Office dataset, the average
indoor air temperature for feeling cold or cool is slightly higher than
that for feeling slightly cool. This phenomenon may be due to there
being too few subjects (24 participants in total) in the Medium US
Office dataset. Additionally, the other factors such as the relative
humidity, age, gender, and outdoor weather will affect the thermal
sensation. This is the reason why we use as many features as possible
to build a more accurate and robust thermal comfort prediction model.

From the above analysis, there are observable differences between
the ASHRAE, Scales Project and Medium US Office datasets. One of the
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reasons is that buildings in these three datasets are located in various
climate zones, where climate variability can lead to a different working
environment, occupant cognition and behaviour, therefore affecting oc-
cupants’ thermal sensation in different buildings. Considering that the
three datasets share many similarities in occupant thermal comfort and
that the number of instances in the target dataset is very limited, we
explore occupants’ thermal comfort by learning from multiple buildings
in the same climate zone with similar climate conditions. We will then
introduce the proposed thermal comfort modelling in Section 4.4.

4. Methodology

4.1. Problem definition

To learn sensor data from multiple datasets for thermal comfort
modelling, some notations need to be defined in this paper. Firstly,
we give the definition of a ‘task’ and a ‘domain’. A domain  can be
represented as  = { , 𝑃 (𝑋)}, which contains two parts: the feature
space  and the marginal probability distribution 𝑃 (𝑋), where X =
{

𝑥1, 𝑥2,… , 𝑥𝑛
}

∈  . The task  can be represented as  = {𝑦, 𝑓 (⋅)},
which contains two components: the label space 𝑦 and a target predic-
tion function 𝑓 (⋅). 𝑓 (⋅) cannot be observed but can be learnt from the
training data, which could also be considered as a conditional function
𝑃 (𝑦|𝑥).

In the context of traditional machine learning, the common assump-
tion is that the training and test data share exactly the same feature
space and data distribution [42]. However, once the new task  arrives
and its data distribution 𝑃 (𝑋) is different from the previous task, the
new model must be rebuilt from the beginning using the current data.
Such method requires extra effort and is very expensive in most cases.
Compared with traditional machine learning methods, transfer learning
can tolerate differences in data distribution and utilize knowledge from
other sources to target tasks.

In this research, we transfer the knowledge from the source domain
(RP-884 and the Scales Project datasets) to benefit thermal comfort pre-
diction in the target domain (Medium US Office dataset). Although both
domains have different features, they share several common features
such as the indoor air temperature, indoor relative humidity, indoor
air velocity, indoor mean radiant temperature, clothing level, metabolic
rate, and occupants’ age and gender. Therefore, predicting thermal
comfort falls under transductive transfer learning [43], which can be
formally defined as follows: given a source domain 𝑠 and the corre-
sponding learning task 𝑠, a target domain 𝑡 and the corresponding
learning task 𝑡, we aim to improve the performance of the prediction
function 𝑓 (⋅)𝑡 in 𝑡 by discovering the knowledge from 𝑠 and 𝑠, where
𝑠 ≠ 𝑡 and 𝑠 = 𝑡.

Fig. 6 shows the thermal comfort transfer learning system in which
we could use the transfer learning method to learn knowledge from the
source datasets and benefit the target dataset in a specified city.

4.2. Feature selection

Human thermal sensation is influenced by a variety of factors
such as time factors [13], personal information [15], environmental
changes [16], and culture [17]. In this research, several features are
chosen for thermal comfort transfer learning based on the following
criteria: (1) the features were commonly studied in previous thermal
comfort research and (2) the features are easy calculate or collect by
using passive sensing or self-reported responses. In summation, we
divide the features into three broad categories: indoor environmental
features, outdoor environmental features and personal features. Table 2
displays the selected features in the Medium US Office dataset.

Indoor Environmental Features. The indoor environment affects
occupants’ thermal comfort directly, and we adopt the following basic
indoor environmental features derived from Fanger’s PMV model [11]
for thermal comfort prediction: the air temperature, mean radiant
5

Fig. 6. Thermal comfort transfer learning system.

temperature, air velocity and relative humidity. The air temperature
is the average temperature of the air surrounding the occupant at
a location and time. The radiant temperature indicates the radiant
heat transferred from a surface, and the mean radiant temperature is
affected by the emissivity and temperature of the surrounding surfaces,
viewing angles, etc. The air velocity is the average speed of air with
respect to the direction and time. The relative humidity is the ratio of
the amount of water vapour in the air to the amount of water vapour
that the air can hold at a specified pressure and temperature.

Outdoor Environmental Features. Outdoor weather conditions can
have physiological effects on individuals thermal perception and cloth-
ing preference in different seasons [12,44]. For instance, in summer
people tend to choose lightweight clothing, which will influence their
indoor thermal comfort. The most popular measurements of the out-
door environment include the outdoor air temperature and outdoor
humidity, which will also be adopted in this research.

Personal Features. Studying personal features is crucial for effective
thermal comfort modelling because thermal sensation is a subjective
measurement and different individuals perceive the same environment
differently. In this research, we selected the following personal features:
clothing insulation, metabolic rate, age and gender. Clothing insulation
has a major impact on the thermal comfort level because it affects
heat loss and thus the heat balance. Previous research shows the
relationship between age and thermal sensation [17,45]. Besides, Sami
et al. [46] found a significant gender difference in thermal comfort:
females tend to prefer a higher room temperature than males and feel
both uncomfortably hot and uncomfortably cold more often than males.
Hence, gender and age are considered to be the features for thermal
comfort modelling.

The features in a source domain can be considered as a subset in
the target domain. The ASHRAE dataset shares eight features with
the Medium US Office dataset while the Scales Project dataset only
shares six features with the target dataset. Although there are various
other features in these three datasets such as occupant behaviour data
(e.g., adjusting heaters/curtains/ thermostats) and background survey
data (e.g., acceptable temperature), we simplify the thermal comfort
prediction and therefore do not show the other features.

4.3. Imbalance class distribution

As the thermal sensation scale has 5-point values, we regard thermal
comfort prediction as a classification task. Fig. 3 shows the distributions
of the ASHRAE RP-884, Scales Project and Medium US Office datasets.
It is clear that the three distributions are imbalanced, and the number of
thermal sensation instances for −1 (cool) to 1 (warm) far exceeds the
number of other instances. To train a fair classifier, we must address
this class imbalance issue in thermal comfort data. Take the binary
classification as an example. If class 𝑀 is 95% and class 𝑁 is 5% in the
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Table 2
Selected features in the Medium US Office dataset.

Category Data source Feature name Description Units

Indoor HOBO Datalogger (15 min)

Indoor_AT Indoor temperature ◦C
Indoor_RH Indoor relative humidity %
Indoor_AV Indoor air velocity m/s
Indoor_AMRT Indoor radiant temperature ◦C

Outdoor Weather Analytics (15 min) Outdoor_AT Outdoor temperature ◦C
Outdoor_RH Outdoor humidity %

Personal
Daily survey (3 times/day) CL Clothing insulation clo

MR Metabolic rate Met

Background survey (once) Age Participants’ age Years
Gender Participants’ gender
dataset, we can simply reach an accuracy of 95% by predicting class 𝑀
each time, which provides a useless classifier for our purpose. In this
research, we assume that the survey responses are ‘correct’. Although
there may be some biases (e.g., rating bias, anchoring bias, and social
desirability bias) in self-reported data, we will not discuss them in this
paper.

To address an imbalanced dataset, oversampling and undersam-
pling are efficient techniques to adjust the class distribution of the
dataset. Under-sampling (e.g., clustering, edited nearest neighbours [47]
and Tomek links [48]) can balance the dataset by reducing the size of
the majority class. However, undersampling methods are usually used
when we have sufficient data. Oversampling (e.g., the synthetic minority
oversampling technique [49] and adaptive synthetic sampling [50]) aims
to balance the dataset by increasing the number of minority classes,
which can be applied when the data are insufficient.

Generative Adversarial Networks (GANs) have been successfully ap-
plied in various fields to learn the probability distribution of a dataset
and synthesize samples from the distribution [51,52]. A GAN uses a
generator 𝐺 to capture the underlying data distribution of a dataset
and a discriminator 𝐷 to estimate the probability that a given sample
comes from the original dataset rather than being created by 𝐺. Some
techniques such as the TableGAN [53] and TabularGAN [54] have
been proposed to handle the imbalance of tabular data. In particular,
Quintana et al. [55] used the TabularGAN to synthesize a small thermal
comfort dataset. They found that when the amount of synthesized data
is no larger than the amount of real data, the thermal comfort dataset
can achieve similar performance to the real samples.

In the thermal comfort classification problem, labelled thermal com-
fort responses are usually few. Therefore, in this research, we synthesize
survey responses to handle the imbalance of thermal sensation classes.
The TabularGAN 1 is used in this research to generate tabular data
based on the generative adversarial network. It can learn each column’s
marginal distribution by minimizing the KL divergence, which is more
suitable for thermal comfort classification problems compared with
other methods such as the TableGAN, edited nearest neighbours [47],
SMOTE [49], etc. The reason why we did not adopt the TableGAN is
that it optimizes the prediction accuracy on synthetic data by mini-
mizing the cross entropy loss while TabularGAN focuses more on the

arginal distribution. The TabularGAN learns each column’s marginal
istribution by minimizing the KL divergence, which is more suitable
or the thermal comfort classification problem.

.4. Thermal comfort modelling

Traditional algorithms for thermal comfort modelling is isolated and
ccurs purely based on specific buildings in the same climate zone. No
hermal comfort knowledge is retained that can be transferred from
ne thermal comfort model to another. Recently, the transfer learning
echnique has been intensively studied in different applications [31,

1 Python package for TabularGAN:https://pypi.org/project/tgan/.
6

34]. It aims to leverage knowledge from source tasks and then apply
them to the target task. There are various transfer learning techniques
that can be roughly grouped into three categories: inductive transfer
learning, unsupervised transfer learning and transductive transfer learn-
ing [56]. Inductive transfer learning [57] aims to improve performance
on the current task after having learned a different but related skill
or concept on a previous task. Unsupervised transfer learning [58]
focuses on solving unsupervised learning tasks in the target domain
such as dimensionality reduction, clustering, and density. Transductive
transfer learning aims to utilize the knowledge from the source domain
to improve the performance of the prediction task in the target domain.

Transductive transfer learning can exploit the different levels of
information captured from different layers in the neural network. Gen-
erally, layers close to the input data capture specific characteristics in
the dataset while deeper layers capture information more relevant to
the tasks (e.g., object types in image recognition and thermal sensation
labels in thermal comfort prediction). The Medium US Office dataset,
as described in Section 3.1, differs in cities and climate zones from
the ASHRAE dataset and the Scales Project dataset. In different cli-
mate zones, there are various factors possibly contributing to thermal
comfort, e.g., climate characteristics and occupants’ recognition and
endurance. This motivates us to investigate transfer learning between
the ASHRAE/Scales Project datasets and Medium US office dataset in
climate variability, which is close to the layers near the input.

We assume that climate variability affects the lower-level neural
network only. Therefore, these layers need to be adapted to better
represent the Friends Center office building in the target dataset. This
can be regarded as retaining the knowledge of higher-level mappings
from the source dataset. Hence, we retain the last hidden layer of
the models on the ASHRAE and Scales Project datasets as shown in
Fig. 7. Then, the thermal comfort neural network will be retrained with
the Medium US Office dataset until convergence to find the optimal
parameters for the lower hidden layers.

5. Experiment

In this section, we conduct experiments on the proposed thermal
comfort transfer learning models and compare the performance with
the state-of-the-art techniques and different configurations. We address
the two research questions: Can we predict occupants’ thermal comfort
accurately by learning from multiple buildings in the same climate zone when
we do not have enough data? If so, which features contribute the most to
effective thermal comfort transfer learning? Specifically, we explore how
the numbers of hidden layers and sample size of the training set in the
target building affect thermal comfort transfer learning performance.

5.1. Experimental Setup

In our research, the source domain (ASHRAE RP-884 dataset and
the Scales Project dataset) and the target domain (Medium US Of-
fice dataset) share some common features, which include four indoor

environmental variables (air temperature, indoor relative humidity,

https://pypi.org/project/tgan/


Building and Environment 195 (2021) 107725N. Gao et al.

m
v
(
O
a
k

n
T
b
t
c
t
s
e
n

i
c
r
1
s
r
2
t

(
d
n
f
o
c
l
h
s

2
m
f
s
c
e
s
a
a
r
f
c
a
e

Fig. 7. The architecture for thermal comfort transfer learning.
a
i
R
c
l
a
m
e
c
t
u



ean radiant temperature, and indoor air velocity), two environmental
ariables (air temperature and humidity) and two personal variables
age and gender). In addition, the ASHRAE RP-884 and Medium US
ffice datasets share two other personal variables (clothing insulation
nd metabolic rate). The shared features make it possible to transfer
nowledge to the target domain from the source domain.
Preprocessing. As discussed in Section 3.2, we first merge the mi-

ority classes and reclassify the thermal sensation into five categories.
hen, we standardize the features by scaling them to unity variance for
etter classification performance. Considering that the thermal sensa-
ion classes are extremely imbalanced, in order to train a meaningful
lassifier, the TabularGAN [54] technique is applied for synthesizing
he samples in all the classes except the majority class in the training
et. Here, 50% of the samples in each class were synthesized while
nsuring that the number of samples per category did not exceed the
umber of samples in the majority class.

Taking the Medium US Office dataset as an example, there are 2497
nstances in the original dataset. After removing the null values and
ategorizing the thermal sensation responses, there were 1090 ‘neutral’
esponses, 462 ‘slightly cool’ responses, 408 ‘slightly warm’ responses,
54 ‘cool or cold’ responses and 131 ‘warm or hot’ responses. After
ynthesizing the data using the TabularGAN, there were 981 ‘neutral’
esponses, 624 ‘slightly cool’ responses, 551 ‘slightly warm’ responses,
08 ‘cool or cold’ responses and 177 ’warm or hot’ responses in the
raining set (90% of the dataset).
Architecture. In this research, we choose the multilayer perception

MLP) neural network as the classifier for the source domain and target
omain. Each neural network consists of two hidden layers with 64
eurons in each layer. The Relu function is used as the activation
unction in hidden layers. Then, the softmax function is applied to the
utput layer as the activation function. We train the classifier with the
ategorical cross-entropy loss function and the Adam optimizer with
earning rate = 0.001. The batch size is set to 200 and the max epoch
as been set to 500. Besides, the fixed random seed is chosen for dataset
huffling and training.
Evaluation. Similar to previous thermal comfort studies [15,24,25,

8], the accuracy and weighted F1-score are chosen as the performance
etrics. Accuracy reflects the overall performance of the thermal com-

ort model. Since our priority goal is to correctly predict the thermal
ensation for as many occupants as possible to achieve overall thermal
omfort/energy savings in the building, accuracy is used as the main
valuation metric in this problem. We also adopt the weighted F1-
core as the best metric to assess the accuracy of capturing performance
cross imbalanced classes. The F1-score considers both false positives
nd false negatives to strike a balance between the precision and
ecall. The ‘weighted-average’ calculates the metrics for each class and
inds their average weighted by the number of true instances for each
lass. Compared with the ‘macro-average’ method, the ‘weighted aver-
ge’ considers class imbalances. The weighted F1-score is helpful for
7

valuating thermal sensation classifiers as it considers all imbalanced
classes. That is, it evaluates the classifiers for different user groups with
different thermal sensation levels instead of all occupants globally.

Baselines. For the baseline, three different categories of baselines
re selected for comparison with our proposed method: random guess-
ng, the PMV model and multiple traditional machine learning models.
andom guessing generates the sample from the distribution of thermal
omfort and regards it as a predicted value. Similar random base-
ines have been widely used in previous thermal comfort studies such
s [35,59]. The PMV model is the most prevalent thermal comfort
odel worldwide. In the experiment, we will only use the four indoor

nvironmental variables, the metabolic rate and clothing insulation to
alculate the PMV score 𝑝𝑠 according to the formula in [60] for the
arget dataset. Then, the thermal sensation class (𝑝𝑠) is calculated
sing Eq. (1).

(𝑝𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2, if 𝑝𝑠 ≤ −1.5
−1, if − 1.5 < 𝑝𝑠 ≤ −0.5
0, if − 0.5 < 𝑝𝑠 ≤ 0.5
1, if 0.5 < 𝑝𝑠 ≤ 1.5
2, if 𝑝𝑠 ≥ 1.5

(1)

For the multiple traditional machine learning models, we choose K-
nearest Neighbours [61], Naive Bayes [62], Support Vector Machine
(with Linear, RBF and Polynomial kernel) [63], Decision Tree [64],
Random Forest [65], AdaBoost [66] as baselines. Naive Bayes [62]
from Bayes family methods is chosen due to its fast speed and working
well with high dimensions. Support Vector Machine [63] technique
is efficient for handling high dimensional spaces. Different from algo-
rithms like SVM, AdaBoost [66] is fast, simple and easy to use with
less need for tuning parameters. K-nearest Neighbours [61] is a simple
method storing all available instances and classifying data instances
according to a similarity measure, which has been widely used in the
pattern recognition and statistical prediction area. Random Forest [65]
is an ensemble learning method for classification operated by building
multiple decision trees. It can cope with high-dimensional features and
judge the feature importance.

Compared to the PMV model using six factors for thermal comfort
prediction, the multiple machine learning algorithms use ten features
as input features (see Table 2). Besides, all three of the above baselines
build a thermal comfort classification model using the Medium US
dataset.

Cross-validation. We apply the𝑘-fold cross-validation [69] (k = 10)
method for effective thermal comfort classification. The advantage of
10-fold cross-validation is that it estimates the unbiased generalization
performance of the thermal comfort prediction model. In the experi-
ment, the data from the target domain (US Medium Office dataset) are
randomly partitioned into 10 folds, each fold serves as the testing data
iteratively, and the remaining 9 folds are used as the training data.
The cross-validation process is repeated 10 times, and the prediction
results (accuracy and weighted F1-score) are averaged to produce a

single estimation.
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Fig. 8. ’Köppen World Map High Resolution’ by Peel, M. C. et al. [67], licenced under Creative Commons Attribution-Share Alike 3.0 Unported [68], Desaturated from original.
Table 3
Classification of the ASHRAE RP-884 database for HVAC buildings according to climates.

Climate Number of cities Instances

Tropical 5 (Townsville, Jakarta, Darwin, Bankok, and
Singapore)

3826

Dry 6 (Honolulu, Kalgoorlie-Boulder, Karachi, Quettar,
Multan, and Peshawar)

3290

Temperate 12 (Brisbane, Melbourne, Athens, South Wales,
Sydney, San Francisco, Merseyside, San Ramon,
Antioch, Auburn, Oxford, and Saidu)

3512

Continental 3 (Ottawa, Montreal, and Grand Rapids) 2808

All 26 13 436
Climate zone divisions. We adopt the Köppen climate classification
updated by Peel et al. [67], which is one of the most widely used
climate classification systems in the world. As shown in Fig. 8, the
Köppen climate classification divides climates into five main climate
zones: A (tropical), B (dry), C (temperate), D (continental), and E
(polar). Each large climate zone is then divided into several small
subzones based on temperature patterns and seasonal precipitation. All
specific climates are assigned a main group of climate zones (the first
letter).

In our study, the target domain (Philadelphia in the US) belongs to
the ‘temperate’ climate zone. In the source domain, the Scales Project
dataset includes 8225 instances from 57 cities in total, and 5411
instances from 32 cities (e.g., Yokohama, Sydney, and Cambridge) were
located in the ‘temperate’ climate zone. The ASHRAE RP-884 database
consists of 25 623 thermal comfort responses from 26 cities in total,
where 12 cities (e.g., Berkeley, Athens, and Chester) [70] are situated
in the same climate zone as Philadelphia.

We run the proposed TL-MLP model and TL-MLP-C* models with the
ASHRAE database and the Scales Project database as the source domain
and the Medium US Office dataset as the target domain. In particular,
for both proposed models, we only use the data from buildings with
HVAC systems in all datasets. For the TL-MLPC* model, we use the data
from the buildings with HVAC systems in the same climate zone as the
source domain and the Friends Center building as the target domain.

Besides, we classify the HVAC buildings in the ASHRAE RP-884
database into different climates (see Table 3). The table shows that
in the ASHRAE RP-884 database, there are 13 436 observations from
buildings with HVAC systems in total and 3512 such observations in
8

Table 4
Prediction performance for different algorithms on the target dataset.

Algorithm Accuracy (%) F1-score (%)

PMV 33.35 (2.40) 32.45 (2.35)
Random 27.23 (1.30) 29.30 (1.40)

KNN 41.43 (2.95) 41.93 (2.85)
SVM (Linear) 29.44 (5.19) 30.92 (4.84)
SVM (RBF) 37.93 (3.86) 40.91 (4.04)
SVM (Poly) 34.02 (4.59) 37.66 (5.15)
Decision tree 43.33 (4.94) 43.34 (4.87)
Random forest 51.41 (3.03) 52.93 (3.69)
Naive Bayes 40.43 (4.10) 39.40 (3.97)
AdaBoost 42.94 (3.22) 42.41 (3.94)
MLP 50.35 (3.81) 50.67 (4.51)

TL-MLP 50.76 (4.31) 53.60 (4.43)
TL-MLP-C* 54.50 (4.16) 55.12 (4.14)

the ‘temperate’ climate zone. Since the Scales Project dataset recorded
the Köppen climate and HVAC status information during the data col-
lection, after calculation, there were 4621 observations from buildings
with HVAC systems in total and 3245 observations collected from
buildings with HVAC systems located in the ‘temperate’ climate zone.

5.2. Overall prediction result

Table 4 shows the performance of different thermal comfort mod-
elling algorithms. We use all ten features described in Section 4.2 on
most algorithms except for the PMV model. From Table 4, we can see
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Fig. 9. Confusion matrix on the target domain.

that the PMV model performs better than only the random baseline
and SVM classifiers (kernel = ‘Linear’) in accuracy. The F1-score of
the linear SVM is still higher than that of the PMV model. This may
be because we use more features in machine learning classifiers while
the PMV model only has six factors. We will discuss the prediction
performance with different feature sets later in Section 5.3.

Table 4 shows that the random forest algorithm performs the best
on all metrics compared with the PMV model, random baseline and
other data-driven models including eight traditional machine learn-
ing classifiers. This may be because the random forest is usually re-
garded as the best classification algorithm for small datasets [35] and
has been proven to have the highest prediction accuracy for thermal
sensation [26].

Most importantly, we find that the TL-MLP has a higher F1-score
for thermal comfort classification than other machine learning meth-
ods without using transfer learning. Although the TL-MLP has better
prediction performance than the MLP on all metrics, the prediction
accuracy of the TL-MLP is slightly lower than that of the random forest.
The potential reason is that the TL-MLP transfers knowledge from all
HVAC buildings in the world regardless of the different climate zones,
leading to lower prediction accuracy than that of the random forest.
Excitingly, the TL-MLP-C* model works better than all of the state-of-
the-art algorithms on both metrics (accuracy and F1-score), indicating
the effectiveness of the proposed approach.

To further investigate how the proposed TL-MLP-C* improves the
prediction performance compared to the MLP, we show the confusion
matrices for the MLP and TL-MLP-C* in Fig. 9. The figure shows that the
MLP model can predict label 0 (neutral) with the highest probability of
0.61, which is similar to the 0.62 of the TL-MLP-C*. However, it still
has high chances to misclassify labels 1 (slightly warm) to 0 (neutral).
Instead, the transfer learning-based thermal comfort model TL-MLP-C*
can predict labels more accurately than the traditional MLP model,
especially for the minority classes (−2, −1, 1). It can predict 67% of
the label −2 (cool or cold) instances and 40% of the label 1 (slightly
warm) instances correctly and achieves an average accuracy of 54.50%
for all classes from −2 to 2.

In summary, our proposed transfer learning-based models (TL-MLP
and TL-MLP-C*) achieve remarkable performance for thermal comfort
prediction compared with the random baseline, traditional PMV model
and data-driven algorithms without transfer learning. In particular, the
TL-MLP-C* model outperforms the state-of-the-art algorithms on both
metrics (accuracy and F1-score). Furthermore, the improved prediction
performance of the TL-MLP-C* is significant compared to that of the
standard MLP model.

5.3. Impact of different feature combinations

We will now explore how accurately the proposed TL-MLP and TL-
MLP-C* models work when only a set of features is available. Usually,
indoor sensors are inexpensive and unobtrusive and have been installed
in many buildings with HVAC systems. However, some features may
be unavailable due to factors such as privacy, costs, etc. For instance,
9

Table 5
Prediction performance for different feature sets on the target dataset.

Sets Algorithm Accuracy (%) F1-score (%)

𝑎

PMV 33.35 32.45
Random Forest 34.77 34.92
MLP 33.18 34.06
TL-MLP 33.53 35.90
TL-MLP-C* 33.98 39.32

𝑏
Random Forest 43.43 43.18
MLP 42.96 45.31
TL-MLP 44.10 45.88
TL-MLP-C* 47.10 51.15

𝑐
Random Forest 51.41 52.93
MLP 50.35 50.67
TL-MLP 50.76 53.60
TL-MLP-C* 54.50 55.12

occupants may not be willing to report their age, which reflects their
metabolism level and influence their thermal comfort feelings. Besides,
it is somewhat inconvenient to install outdoor weather stations outside
a building to capture outdoor environmental changes (e.g., outdoor air
temperature and humidity) more accurately than the official weather
stations used for local weather forecasting.

Hence, in the experiment, we will divide our features into 3 different
sets 𝑎,𝑏, and 𝑐 based on PMV factors, personal factors and outdoor
environmental factors, respectively; and then compare the different sets
and explore which features contribute the most to effective thermal
comfort transfer learning. The feature sets are as follows:

• 𝑎: Six basic factors introduced in the PMV model: indoor air
temperature, indoor air velocity, indoor relative humidity, indoor
radiant temperature, clothing insulation and metabolic rate. This
is the most common feature set for thermal comfort modelling
used in previous studies [35].

• 𝑏: Six factors from 𝑎 and two personal factors: age and gender.
Personal factors such as gender and age can be easily collected
through background surveys.

• 𝑐 : Eight factors from 𝑏 and two outdoor environmental fac-
tors including the outdoor air temperature and outdoor relative
humidity. The above two outdoor environmental features need
to be accessed from the outdoor weather station near the target
building.

For different feature sets, we use the same oversampling methods
and fixed random seeds in neural network training. Table 5 shows the
prediction performance for different feature sets on the target dataset.
The random forest and MLP algorithms are chosen for comparison with
the TL-MLP and TL-MLP-C* algorithms due to their relatively high
performance, as shown in Table 4. For the 𝑎,𝑏, and 𝑐 feature sets,
we can observe that the performance of the TL-MLP and TL-MLP-C*
models increases as the number of features increases. In addition, the
TL-MLP-C* model has the highest accuracy and F1-score in each feature
set.

For feature set 𝑎, the PMV model works slightly better than the
MLP model in accuracy but worse in F1-score. The random forest
algorithm achieves the best performance in accuracy while TL-MLP-
C* achieves the highest F1-score. With transfer learning from source
datasets, the TL-MLP and TL-MLP-C* have similar prediction accuracies
to the traditional PMV model. This shows that the advantages of the
proposed TL-MLP and TL-MLP-C* models cannot be fully utilized when
the number of features is limited.

In feature set 𝑏, all data-driven models achieve better prediction
performance than using only feature set 𝑎. This shows that personal
information (age and gender) could effectively improve thermal com-
fort prediction. Moreover, the TL-MLP-C* model has the best prediction
performance compared with the other methods in both metrics when
considering personal factors.
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Fig. 10. Prediction performance with different number of hidden layers.

In comparison to feature sets 𝑎 and 𝑏, the random forest, MLP,
L-MLP and TL-MLP-C* work best among all metrics on the feature set
𝑐 . This proves that outdoor environmental changes can affect occu-
ants’ thermal sensation in HVAC buildings and shows the necessity to
onsider outdoor features for effective thermal comfort modelling.

.4. Impact of the number of hidden layers

We also conduct adaption experiments by using different numbers
f hidden layers in the TL-MLP-C* model. Fig. 10 shows the prediction
ccuracy and F1-score for TL-MLP-C* with different numbers of hidden
ayers. We can observe that the prediction performance is worst in
ll metrics with only one hidden layer. Since our proposed method
ransfers the last layer of the hidden layer, if we set only one hidden
ayer, the target dataset will have little contribution to the prediction
odel. When the number of hidden layers is set to 2, the proposed
L-MLP-C* model has the highest prediction performance in accuracy
nd F1-score. As the number of hidden layers continues to increase,
he prediction performance tends to decrease, which may be due to the
odel being overfitted with more trainable parameters.

Finally, although our proposed TL-MLP-C* model has better thermal
omfort prediction performance than the state-of-the-art methods, the
chieved accuracy (54.50%) is still not remarkably high. There are
everal potential reasons: (1) We adopt the TabularGAN to resample
he minority classes for meaningful classification. Fifty percent of the
nstances in each class were synthesized while ensuring that the number
f samples per category did not exceed the number of samples in the
ajority class. Although some previous works achieve slightly higher

ccuracy for thermal comfort prediction (e.g., 63.09% in [35] and 62%
n [26]), they only assigned slightly higher weights to the instances in
he minority classes, which cannot handle the class imbalance problem
s well as our method. (2) Predicting thermal comfort is challenging
ince many factors affect occupants’ thermal sensation (as discussed
n Section 1). There may also be many response biases during the
urvey. Therefore, the classification accuracy in most previous research
s also not good and rarely higher than 60%, even for personal thermal
omfort modelling. (3) It could be better to regard the thermal comfort
rediction as a regression problem instead of a classification problem.
or example, classifying ‘−2’ (cool) to ‘−1’ (slightly cool) should be
ore acceptable than classifying ‘−2’ (cool) to ‘+2’ (warm). We will

tudy the thermal comfort regression in future work.

. Conclusion

A huge amount of sensor data has been generated in cities world-
ide. Recently, utilizing such data from multiple cities to benefit a

arget city has become a critical issue. In this research, we applied
10
the idea of transfer learning to the thermal comfort area and proposed
two transfer learning-based thermal comfort prediction models: TL-
MLP and TL-MLP-C*. For the first time, we transferred the knowledge
from similar thermal environments to a target building for effective
thermal comfort modelling. Furthermore, we improved the prediction
performance and built meaningful classifiers by using a GAN-based re-
sampling method (i.e., TabularGAN) to imbalance the class distribution
of occupants’ thermal sensation.

By retaining the last hidden layer of the neural network from
the source domain (ASHARE RP-884 and Scales Project datasets), we
trained the thermal comfort model for the Friends Center building from
the Medium US Office dataset and found the optimal parameter settings
for lower hidden layers. Extensive experimental results showed that
the proposed TL-MLP and TL-MLP-C* models outperform the state-of-
the-art algorithms for thermal comfort prediction. Interestingly, the
most significant feature sets are identified for effective thermal comfort
transfer learning.

This research provides the possibility of building thermal comfort
models with limited data. The publicly available thermal comfort data
from similar climate zones can be used to benefit the thermal comfort
modelling in the target building. However, the current studies have
some limitations that needed to be addressed in future research: (1)
First, we only used the Friends Center Office as the target building
which is located in the ‘temperate’ climate zone. The performance of
transfer learning on more target buildings in the same or different
climate zones should be explored in the future. (2) Although the
proposed method can benefit the target building with a small amount
of labelled data, the prediction model will achieve the best performance
when at least six factors are provided. In real-world scenarios, if there
are only several factors (lower than six) in the target building, our
method can still work by setting the values of missing factors to the
same distribution as the source domain, but the prediction performance
for the target building will be affected. (3) We only investigated the
MLP models but more advanced transfer learning architectures can
be explored to find transferable representations between the source
domain and target domain in future studies.
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