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Abstract—Clustering big data often requires tremendous computational resources where cloud computing is undoubtedly one of the

promising solutions. However, the computation cost in the cloud can be unexpectedly high if it cannot be managed properly. The long

tail phenomenon has been observed widely in the big data clustering area, which indicates that the majority of time is often consumed

in the middle to late stages in the clustering process. In this research, we try to cut the unnecessary long tail in the clustering process

to achieve a sufficiently satisfactory accuracy at the lowest possible computation cost. A novel approach is proposed to achieve

cost-effective big data clustering in the cloud. By training the regression model with the sampling data, we can make widely used

k-means and EM (Expectation-Maximization) algorithms stop automatically at an early point when the desired accuracy is obtained.

Experiments are conducted on four popular data sets and the results demonstrate that both k-means and EM algorithms can achieve

high cost-effectiveness in the cloud with our proposed approach. For example, in the case studies with the much more efficient

k-means algorithm, we find that achieving a 99 percent accuracy needs only 47.71-71.14 percent of the computation cost required for

achieving a 100 percent accuracy while the less efficient EM algorithm needs 16.69-32.04 percent of the computation cost. To put

that into perspective, in the United States land use classification example, our approach can save up to $94,687.49 for the

government in each use.

Index Terms—Cloud computing, cost-effectiveness, clustering algorithms, big data, data mining

Ç

1 INTRODUCTION

THE long tail refers to the phenomenon where the portion
of the distribution has a large number of occurrences far

from the head or central part of the distribution, which is
commonly observed in recommendation systems and data
mining [1], [2]. In recent years, with the explosive growth of
data in many areas such as remote sensing [3], [4], internet
of things [5], [6], [7], business [8], and bioinformatics [9], the
capability for data generation becomes so powerful and
enormous. Clustering algorithms have been widely used as
one of the most powerful meta-learning tools for accurate
analysis of massive volumes of data generated by modern
devices. The main goal of clustering is to categorize data
points into clusters such that those grouped in the same
cluster are similar according to specific metrics. During the
clustering process, it is usual that the clusters are formed
quickly at the early stage while changes slowly during the
middle to late stages. This is the long tail in clustering [10].

In the area of clustering, there have been lots of attempts
to analyze and categorize the data for a huge number of
applications. However, one of the major issues in using
clustering algorithms is that it often requires tremendous
computational resources especially when processing large-
scale data sets. To illustrate this, we use the k-means algo-
rithm to cluster remote sensing images. For k clusters and p
pixels, a total of k� p distances need be computed at each
iteration. For example, for 10 classes and 40,000 (200� 200)
pixels, 50 iterations of the k-means clustering require 20 mil-
lion multiplications for every image. Usually, the remote
sensing data sets are huge and consist of tens of thousands
of images such as SAT-6 [11], AID [12], NWPU-RESISC45
[13]. As a result, processing such data is undoubtedly com-
putationally intensive and extremely costly.

Small and medium-sized organizations usually cannot
afford the exorbitant in-house IT infrastructure for processing
such a large amount of data. Naturally, cloud computing, the
latest distributed computing paradigm which eliminates the
need to maintain expensive computing hardware, dedicated
space, and software, becomes the best choice for them [14].

Cloud computing adopts the pay-as-you-gomodel, where
users are charged flexibly according to the usage of cloud
services such as computational resources. However, the
computation cost in the cloud can be unexpectedly high if
users cannot manage it properly, which also becomes a bot-
tleneck for big data mining in the cloud. For instance, run-
ning 50 m4-2xlarge EC2 virtual machine (VM) instances in
Amazons Sydney datacenter costs $18,000 permonth [15].

In most clustering situations, it is not always necessary to
achieve the optimal solution because users often do not
need 100 percent. Take the marketing for example, based on
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various customer interests, age and product holding infor-
mation, clustering techniques have been used for creating
customer groups. In this situation, a reasonable margin of
inaccuracy is acceptable becausemarketers do not need their
customers to be grouped with 100 percent accuracy. As long
as they have a general picture of the clustering result, they
are able to make a decision. In fact, there will never be
completely accurate, e.g., weather forecasting or land use
statistics. In such scenarios, stopping the clustering process
at a reasonable point is important in saving computation
costs if it is more preferable to achieve a sufficiently satisfy-
ing accuracy at a low computation cost than a 100 percent
accuracy at a high cost.

Thus, cutting the unnecessary long tail in the clustering
process is a promising solution to cost-effective clustering.
In other words, we need to study how to achieve a suffi-
ciently satisfactory clustering accuracy at the lowest possi-
ble computation cost.

Cost-effective clustering in the cloud allows big data
analytics to be applied in a broader range of fields by more
businesses and organizations, especially small and medium-
sized ones with a limited budget. He et al. observed the long
tail phenomenon and studied the cost effectiveness of the k-
means algorithm in the cloud. They found that achieving
99 percent accuracy with the k-means algorithm only needs
a bit more than 20 percent of computation time on average
[10]. However, when to stop the k-means algorithm automat-
ically with the desired accuracy has not been well investi-
gated by researchers up to now.

There is a variety of clustering techniques that can be
adopted for exploration and demonstration of the cost effec-
tiveness of big data clustering in the cloud. Among the top 10
data mining algorithms discussed byWu et al. [16], k-means
[17] and Expectation Maximization (EM) algorithms [18]
belong to the field of clustering. Furthermore, k-means and
EM are both iterative algorithms and converge to the final
(optimal) result iteratively [19], [20], which provides possi-
bilities for us to calculate the accuracy of the intermediate
clustering result at each iteration of the clustering process.
Therefore, we choose k-means and EM algorithms to explore
and demonstrate the cost-effective clustering in the cloud.

The contributions of the paper are as follows:

1) We demonstrated the long tail phenomenon in the
clustering process, and defined the cost effectiveness
problem of k-means and EM clustering algorithms in
the cloud.

2) To the best of our knowledge, this is the first paper to
achieve cost-effective clustering in the cloud through
cutting the unnecessary long tail. We proposed a
regression model between the change rate of objec-
tive function and clustering accuracy.

3) We compared the excellent performance of cost
effectiveness of k-means and EM algorithms on mul-
tiple benchmark data sets, and discussed the threats
to validity of the results.

The remainder of the paper is organized as follows.
Section 2 presents a motivating example and analyzes the
research problem. Then, Section 3 describes the methodolo-
gies used in the cost-effectiveness problem and Section 4
proposes a novel approach for cost-effective big data

clustering in the cloud. Section 5 displays the results of
experiments conducted on different data sets. Section 6 sur-
veys the related work. Finally, Section 7 addresses the con-
clusions and future work.

2 MOTIVATING EXAMPLE AND PROBLEM ANALYSIS

In this section, we introduce an example to motivate cost-
effective big data clustering and then analyze the research
problem.

2.1 Motivating Example

Knowledge about land use and land cover has become
increasingly important in overcoming the problems such
as uncontrolled development, deteriorating environmental
quality, loss of prime agricultural lands, destruction of
important wetlands, and loss of fish andwildlife habitat [21].
The U.S. Department of Agriculture reported that, during
the 1960s, a total of 730,000 acres were urbanized each year,
transportation land uses expanded by 130,000 acres per year,
and recreational area increased by about 1 million acres per
year. The present distribution and area of agricultural, recre-
ational, urban lands, as well as their changing proportions,
are needed by legislators, planners, state and local govern-
ment officials to determine better land use policies and
implement effective plans for regional development.

The recent advances in remote sensing techniques give
birth to the explosive growth of remote sensing images,
which can be used effectively to calculate the current use of
land sources. Generally, remote sensing images in the speci-
fied district have similar spectral characteristics and contain
similar components such as forest, water, road, building,
grassland and wasteland. By clustering the pixels in remote
sensing images that are spectrally similar, we can get an
intuitive overview of remote sensing objects without any
prior knowledge, which is significant in the classification
statistics on land use.

Suppose that the state governor plans to have statistics
about the land use classification of California. According to
the high solution aerial images from USGS National Map
Urban Area Imagery collection, the partitioned remote sens-
ing images should be extracted from the original data set,
the solution of which is 1 foot per pixel. Since the California
area is about 423,970 km2, it is required to process tens of
thousands of remote sensing images. The computation cost
would be extremely high.

2.2 Problem Analysis

Remote sensing clustering for land use classification is both
computation- and data-intensive. For a single machine, the
limitation of its hardware resources results in a bottleneck
in processing such huge data. This bottleneck can be
avoided if we run the remote sensing images clustering in
the cloud. The cloud can offer virtually unlimited computa-
tional resources for processing large data sets. Cloud com-
puting adopts the pay-as-you-go model [22] and enables
flexible and on-demand access to computational resources,
which allow big data clustering to be performed by using
only necessary computational resources for a needed period
of time. Since the cloud cost is the main concern for users,
how to achieve cost effectiveness has become a critical issue
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for both academia and industry. For clustering applications
such as land use classification, it is usually acceptable for
the governor if the accuracy is within a reasonable range.
Due to the long tail phenomenon (see Section 3.4) in the
clustering process, a sufficient clustering accuracy may be
obtained within a short time. After that, incremental accu-
racy improvement usually takes a relatively long time in the
remainder of the clustering process. Thus, we need to con-
sider the utilization of this phenomenon and find an appro-
priate point to terminate the clustering process to achieve
satisfactory accuracy at a low cost.

3 METHODOLOGY

This section presents our study of cost-effective clustering,
including the candidate clustering techniques, the accuracy
calculation method, the cloud cost computing model, and
cost-effective clustering analysis. Clustering is a powerful
method for analyzing massive volumes of data. The main
idea of clustering is to minimize a certain criterion function
usually taken up as a function of the deviations among all
patterns from their respective cluster centers. Usually, the
minimization of the criterion function is sought to utilize
an iterative scheme that starts with a chosen initial cluster
configuration of the data, then alters the cluster member-
ship in an iterative manner to obtain a better configuration.
Appendix A lists the key notations used in this paper.

3.1 Candidate Clustering Techniques

Clustering is an unsupervised method for finding patterns
based on features [23]. Usually, a feature point can be repre-
sented by a vector x ¼ ðx1; x2; . . . ; xdÞ. Based on the distance
measure among feature vectors, a label will be assigned to
each feature. Here, we take the popular k-means and EM
algorithms as examples to demonstrate the cost effective-
ness of big data clustering in the cloud.

3.1.1 K-Means Algorithm

The k-means algorithm proposed by Mac Queen [17] is one
of the simplest and most popular techniques in data mining.
It begins with k initial centers and each point will be
assigned with a label based on the distance between the
point and the cluster centers. The steps of the k-means algo-
rithm are as follows:

Step 1: Select k points as initial centers C ¼ fc1; c2; . . . ; ckg.
Step 2: For each i 2 f1; 2; . . . ; kg, set clusterCi as the set of

data points that are closer to ci than to cj for all j 6¼ i.
Step 3: Recompute ci as the center of Ci

ci ¼ 1

Cij j
X

x2Ci

x: (1)

Step 4: Repeat Steps 2 and 3 until C no longer changes.
During the process, let mi represent the mean of
cluster Ci. Then the goal of k-means is to minimize
the criterion function in an iterative manner

J ¼
Xk

i¼1

X

x2Ci

x� mik k2: (2)

In Eq. (2), the squared euclidean distance is adopted to
represent the metric of xi � mkk k2 due to its computational
simplicity since the cluster at each iteration can be calcu-
lated in a straightforward manner. The time complexity of
the k-means algorithm is OðnkdiÞ, where n is the number
of d dimensional data points in the data set, k is the number
of clusters and i is the number of iterations for the clustering
process to complete (i.e., converge).

3.1.2 EM Algorithm

The Expectation-Maximization (EM) algorithm is designed to
estimate the maximum likelihood parameters of a statistical
model in many situations, such as the one where the equa-
tions cannot be solved. EM approximates the unknown
model parameters iteratively with the Expectation step (E
step) and the Maximization step (M step) which are as
follows:

E step calculates the expected value of the log-likelihood
function, with respect to the conditional distribution of Z
givenX under the current estimate of the parameters ut

QðujutÞ ¼ EZjX;utðlogLðu;X;ZÞÞ: (3)

M step finds the parameters that maximize this quantity

utþ1 ¼ argmax
u

QðujutÞ: (4)

The EM algorithm seeks to find the maximum likelihood
estimation (MLE) by iterating the above two steps.

3.2 Accuracy Calculation

Accuracy is a crucial measurement for evaluating the effec-
tiveness of big data clustering. For the purpose of demon-
strating the gradual increase of the clustering accuracy
iteration by iteration, we use the final clustering result as the
reference partition noted by Pf as 100 percent accuracy. For
instance, the final partition Pf of k-means can be achieved
when cluster centers no longer change. Through the compari-
son between the clustering results achieved at each iteration
of the algorithm, we can demonstrate how the accuracy of the
intermediate partition result Pi 2 fP1; P2; . . . ; Pfg increases.

The accuracy can be measured by the similarity between
Pi andPf . In our research, we use theRand Index [24] to assess
the similarity, which is a popular accuracy calculation
method in the data clustering field. The Rand Indexmeasures
the similarity between two data clustering partitions. Each
partition is viewed as a collection of n� ðn� 1Þ=2 pairs of
elements, where n is the size of the data set. For each pair of
data points, a partition either assign them to the same cluster
or different clusters. Thus, the similarity between partitions
P1 andP2 can be calculated as follows:

RandðP1; P2Þ ¼ n11 þ n00

n00 þ n01 þ n10 þ n11
¼ n11 þ n00

n
2

� � ; (5)

where:
n11: the number of pairs of elements that are placed in the

same clusters both in P1 and P2;
n00: the number of pairs of elements that are placed in the

different clusters both in P1 and P2;
n01: the number of pairs of elements that are placed in the

same clusters in P1 but in different clusters in P2;
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n10: the number of pairs of elements that are placed in
different clusters in P1, but in the same clusters in P2.

Using the Rand Index as the similarity calculation mea-
sure, we can compute the clustering accuracy at each itera-
tion of the clustering process. Take Fig. 1 for example, for
the pairs which are placed in the same cluster (i.e., same
color) in P1 and P2 contains ða1; a2Þ, ða1; a3Þ, ða2; a3Þ,
ða5; a6Þ, ða8; a9Þ. The pairs that are placed in different clus-

ters in both P1 and P2 include ða1; a5Þ, ða1; a6Þ, ða1; a7Þ,
ða1; a8Þ, ða1; a9Þ, ða2; a5Þ, ða2; a6Þ; ða2; a7Þ, ða2; a8Þ, ða2; a9Þ,
ða3; a5Þ, ða3; a6Þ, ða3; a7Þ, ða3; a8Þ, ða3; a9Þ, ða4; a7Þ, ða4; a8Þ,
ða4; a9Þ, ða5; a8Þ, ða5; a9Þ, ða6; a8Þ, ða6; a9Þ. Then, there is

RandðP1; P2Þ ¼ ð5þ 22Þ=36 ¼ 75%. Obviously, the value of
Rand Index increases with iterations and at the final
iteration of clustering process, where Pi ¼ Pf , there is
RandðPi; PfÞ ¼ 1, which indicates that the process completes
with a 100 percent accuracy.

3.3 Cloud Computing Cost Model

The cost of computation resources when clustering big data
can be calculated by the cost models offered by cloud ven-
dors. In this research, we use Amazons Elastic Compute
Cloud (Amazon EC2) web services, which offer four differ-
ent cost models: on-demand, reserved instances, spot
instances, and dedicated hosts. The on-demand cost model
is the basic cost model, under which computing capacities
are paid for by the hours without long-term commitments
or upfront payments.

In this research, the on-demand cost model is employed
to calculate the computation cost incurred during the clus-
tering process

Costcomp ¼ Priceunit � Timecomp: (6)

Computation time Timecomp is measured by the time taken by
the clustering process. The unit price Priceunit is decided by
the computational resource employed in running the algo-
rithm. Take EC2 for example, there are sevenmajor categories
of EC2 VM instances: Linux, SLES, RHEL, windows, win-
dowswith SQL Standard,Windowswith SQLWeb andWin-
dows with SQL Enterprise. In different categories, there are
various types of EC2 VM instances available at different unit
prices. For instance, in Windows category, 36 EC2 instances
are displayed for 4 types: General Purpose, Compute Opti-
mized,Memory Optimized, and Storage Optimized. The unit

prices differ across different areas and range from $0.0066 to
$38.054 per hour.

In this research, we use the computation time as an indi-
cator of the computation cost for simplicity. When we use a
specific Amazon EC2 VM instance, it can be found that the
computation cost and computation time are positively cor-
related. Generally, the longer the computation time, the
higher the computation cost is.

Before running the algorithms, some other costs may
occur such as the transfer cost and storage cost of the big
data set in the cloud. However, the costs incurred by data
storage and data transfer are independent of the clustering
process. Thus, in this research, we focus only on the cost
incurred by the computation of the clustering process and
isolate it from the other costs.

3.4 Cost-Effective Clustering Analysis

He et al. [10] demonstrated the long tail phenomenon using
the k-means algorithm as an example. The same long tail
phenomenon can also be found in our experiments using
both k-means and EM algorithms (see Section 5), which
makes it possible to compute and demonstrate the accuracy
of the intermediate clustering result with incurred cost at
each iteration of the clustering process.

In the clustering process, the long tail phenomenon is
based on the convergence property of clustering algorithms.
In the k-means algorithm, the objective function (sum of
mean square of all points) is monotonically decreasing itera-
tively and can converge in finite steps. A rigorous proof of
convergence property for k-means is given in [19]. For the
EM algorithm, the objective function (log likelihood) is
monotonically increasing and guaranteed to find a local
maximum for the model parameters estimate [20]. From
Fig. 2, we can see the change in the value of the objective
function over computation time.

As the clustering process continues and the clustering
results stabilizes gradually, the convergence of k-means and
EM become very slow, especially at the middle to late stage
of clustering, which incurs high costs for big data clustering.
Fig. 3 shows the long tail phenomenon in the clustering pro-
cess, where y-axis means the clustering accuracy calculated
using Rand Index.

For the cost-effective clustering problem, the conver-
gence rates of the objective functions for k-means and EM at
a certain point can be analyzed with the clustering accuracy
at the same time. This way, we can explore the relationship
between them and propose a solution to cost-effective big
data clustering in the cloud.

Fig. 1. An example of calculating Rand Index between P1 and P2.

Fig. 2. Objective function over computation time.
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4 PROPOSED APPROACH FOR BIG DATA

CLUSTERING IN THE CLOUD

In the k-means and EM clustering process, the objective
function J monotonically changes iteratively until con-
verges in finite steps. For i 2 f1; 2; . . . ; fg, the clustering par-
tition Pi is updated one iteration after another and gradually
approaches the final result Pf , which means that the label of
each point is updated iteratively and clustering accuracy
RandðPi; PfÞ approaches 100 percent. Therefore, we set ri ¼
RandðPi; PfÞ to represent the clustering accuracy at the ith
iteration.

The objective functions of k-means and EM algorithms
are both monotonic and tend to converge over iterations
[19], [20]. However, the value of objective function can be
extremely dissimilar for different clustering algorithms (see
Fig. 2) and can not be compared directly through the single
value. Even with the same algorithm, the different distribu-
tion of data will lead to the very distinct value of objective
function. Therefore, in this research, we define the change
rate of the value of the objective function at the ith iteration
of the clustering process by hi

hi ¼ jJi � Ji�1j
jJi�1j ; i 2 f2; 3; . . . fg; (7)

where Ji indicates the value of the objective function at the
ith iteration during the clustering process. As clustering
converges, accuracy ri increases to 1 while hi decreases to 0.
Therefore, there is a significant negative correlation between
hi and ri (see Fig. 4).

In big data clustering, given a set of data points D, a ran-
dom sampling strategy needs to be adopted first, and then
the data set is partitioned into n groups and each group has
k ¼ D=n individuals. Random sampling is also called prob-
ability sampling, where each subject of k individuals has
the same probability of being chosen for the samples as
other subjects of k individuals [25]. Therefore, when ran-
dom sampling is done, each sample is an unbiased repre-
sentation of the entire data and has the very same
distribution pattern as other samples. After that, n samples
are split into training set and validation set.

In the training set, we utilize the regression analysis to
develop a prediction model for estimating the relationship
between hi and ri during the clustering process. The first con-
cern is how to select the best regression model. In statistics,

the sum squares due to error (SSE), R-square, adjusted R-
square, and root mean squared error (RMSE) are commonly
used as standard statistical metrics [26] for measuring the
performance of the regression model. Generally, the closer
the SSE and RMSE are to 0, the better the regression model
selection and fitting, hence the more successful the data fore-
cast. R-square and adjusted R-square range between 0 and 1,
with a value closer to 1 indicating a better fit.

Based on comprehensive experiments, we found that the
quadratic polynomial regression model shows the best fit
than other popular regression models in most cases, such as
linear regression, three-degree polynomial regression, expo-
nential regression, logistic regression, lasso regression, etc.
The quadratic polynomial model is as follows [27]:

hi ¼ b0 þ b1 � ri þ b2 � ri
2 þ "; i 2 f1; 2; . . . fg; (8)

where " is an unobserved random error with mean zero
conditioned on a scalar variable RandðiÞ. b0, b1, b2 are esti-
mated parameters which represent the relationship between
hi and ri.

By establishing the regression model between these two
variables in the training data set, we can estimate the
changes in hj against the changes in rj (the desired accu-
racy, e.g., 99.9 percent). Then, we conduct the clustering
process iteratively in the validation data set. As clustering
converges, accuracy ri increases and hi decreases iteratively.
When hi � hj, i.e., hi decreases to hj , we can terminate the
clustering process to reduce unnecessary iterations in order
to save computation costs.

To evaluate the proposed approach, we define the total
computation time first. The total computation time Timecomp

includes the overall clustering time for the training data set
Timetrain, and the early-stop computation time Timeactual
when clustering reaches the desired accuracy, which can be
calculated as

Timecomp ¼ Timetrain þ Timeactual: (9)

The training process is conducted only once. When it is
finished, the regression model can be applied repeatedly for
many applications. Thus, Timetrain is negligible compared
to the overall cost in the long term (see Section 5.4 for the
corresponding experimental analysis). Since computation
time is the only indicator of the cost in our research, the cost
effectiveness percentage Costeffective can also be represented
as follows:

Fig. 3. The long tail phenomenon in the clustering process.

Fig. 4. The change rate of objective function over accuracy.
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Costeffective � Timeactual
Timefull

; (10)

where Timefull means the expected computation time in the
clustering when achieves a 100 percent accuracy. The
smaller the value of Costeffective is, the more cost effective
the clustering will be.

5 EXPERIMENT RESULT

In this section, we first describe the data sets and the experi-
mental settings. Then, we evaluate the cost-effectiveness of
the proposed approach. Finally, we discuss the performance
of different clustering algorithms and illustrate the threats
to validity.

5.1 Data Set Description

We have applied our approach to the 3D RoadNetwork, Skin
Segmentation, PokerHanddata sets fromUCImachine learn-
ing repository and the SpaceNet data set of high-solution sat-
ellite images from DigitalGlobe (see Table 1). The above data
sets are the benchmarks formany studies inmachine learning
research and have been cited in high-impact peer-reviewed
venues [28], [29], [30], [31].

The 3D Road Network data set has a total of 434,874 3-
dimensional data points without class labels. It contains the
longitude, latitude and altitude information about a road
network covering a region of 185� 135 km2 in North Jut-
land, Denmark.

The Skin Segmentation data set has a total of 245,057
instances and is collected by randomly sampling B, G, R val-
ues from face images of various age groups, race groups
and genders obtained from FERET database and PAL data-
base. The data set is made up of 2 classes: the skin samples
and non-skin samples.

The Poker Hand data set consists of 1,025,010 records
and each record is an example of a hand consisting of five
playing cards drawn from a standard deck of 52. Each card
is described with two attributes (suit and rank), for a total of
10 predictive attributes. There is one attribute (class) that
describes the “Poker Hand”.

The SpaceNet data set is an online repository of freely
available satellite imagery collected from DigitalGlobe’s
commercial satellites that includes more than 17,533 high-
resolution images (438� 406 pixels) in Rio De Janeiro, Las
Vegas, Shanghai, and Khartoum areas. This data set con-
tains a wealth of geospatial information relevant to many
downstream use cases such as infrastructure mapping and
land use classification.

5.2 Experimental Setup

Given the data sets at hand, the main purpose of the experi-
mental setup is to use a default configuration on the

parameters of the clustering algorithms. In general, finding
an optimal number of clusters is an ill-posed problem of cru-
cial relevance in clusters analysis [32]. Thus, we have chosen
the number of clusters with respect to the number of unique
class labels in the Skin Segmentation (2 classes) and the Poker
Hand (10 classes) data sets. Since the 3D Road Network data
set does not have class labels, we ran the data set with
k ¼ 4; 8. Usually, the number of clustering for remote sensing
images is lower than 10 and can be set in required scenarios
[33]. Thus, with the SpaceNet data set, we attempt to parti-
tion the images into six regions of pixels that can be given a
common label, such as forest, water, road, building, grass-
land and wasteland for the land use classification as
described in themotivating example, i.e., k ¼ 6.

For non-image data sets, including the Skin Segmentation,
the Poker Hand and the 3D Road Network data sets, a ran-
dom sampling generation strategy was applied. In our
research, for data set consisted of n points, we randomly
selectm datawith n=m times. For example, for a data set con-
sisted of 500,000 points, it can be divided into 20; 000� 25 (25
groups and each group has 20,000 points), 10; 000� 50,
5; 000� 100 etc. After extensive experiments, we found that
when the data set has more groups and group size is larger
(which means that we need to find a balance to make both of
the groups number and size not too small), the experimental
result usually shows better performance. Generally, when
each group’s size is above 10,000 points and the number of
groups is above 50, our approach achieves better results. The
above phenomenon also indicates that the larger the data set,
the more effective our method is. For SpaceNet imagery data
set, since each satellite image has 438� 406 data points, we
regard each image as a sampling group for simplicity and
there are 17,533 groups in total. Although the sampling size
of SpaceNet data set is larger than the non-image data sets,
this grouping strategy is still reasonable considering the
huge number of groups.

In the experiments, we use the 10-fold cross-validation to
divide the groups into the training set and the validation
set. For image data set (SpaceNet), each image is considered
as a group. As the remote sensing data set is huge, we select
100 sample images as the training data set that can simulate
the regression model quite accurately.

The experiments were implemented on Matlab r2013a
and conducted on a machine with a 2.20 GHz Intel (R) Core
(TM) i3 processor and 10G memory. The operating system
is 64-bit Windows 7 enterprise.

5.3 Experimental Performance

In this section, we present and discuss the results achieved
by the candidate clustering algorithms for the given data
sets. First, a data set sampling strategy is applied and the
data sets are then divided into training data set and valida-
tion data set. We train a corresponding regression model for
the training set in each dataset. Next, we will introduce the
experimental performance of our approach in the training
process and validation process.

5.3.1 Training Process

Illustrating Long Tail Phenomenon. Fig. 5 shows the increase in
the clustering accuracy over iterations during the clustering

TABLE 1
Description of the Extracted Features

Dataset Instances Attributes Classes

3D Road Network 434,874 4 4, 8
Skin Segmentation 245,057 4 2
Poker Hand 1,025,010 11 10
SpaceNet >3,117,858,324 3 6
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process for one group from the training set. Each marker on
the curve indicates the intermediate partition at every itera-
tion. It can be seen that the k-means algorithm first takes a
relatively small number of iterations (19 iterations) to reach a
high accuracy (95.06 percent), and then takes a large number
of iterations (37 more iterations) to converge to the accuracy
of 100 percent. This confirms the long tail phenomenon dis-
cussed in Section 3.3, which indicates that the majority of
computation time is consumed at the middle to late stages.
In our experiments, we also observed the long tail phenome-
non with the different data sets using both k-means and EM,
which indicates the feasibility of stopping at an early point of
the clustering to achieve the desired accuracy.

In addition, fluctuations of accuracy may be observed in
the early stage in clustering which is normal due to the cho-
sen initial points. However, how to select the optimal initial
points is not part of this research, so we do not discuss it in
this paper.

Building Regression Model. We have explored the relation-
ship between the change rate of the value of objective func-
tion hi calculated using (8) and clustering accuracy ri at the
same iteration. In Fig. 6a, we see the relationships between
hi and ri from all groups in the training data set (3D Road
Network k = 4) by the k-means algorithm, which is repre-
sented by a series of scattered points. Then we can obtain
the regression model by Matlab cftool box [34] through the
points using (8) as follows:

hi ¼ 1:83� ri
2 � 3:66� ri þ 1:83:

This regression model illustrates the general relationship
between hi and ri in the k-means algorithm. Similarly, we
obtain the regression model by the EM algorithm using (8)
as follows (see Fig. 6b):

hi ¼ 0:007232� ri
2 � 0:01479� ri þ 0:007558:

Setting Desired Accuracy. Then, we can set the desired accu-
racy rj and calculate the corresponding hj through the
regression model obtained from the training process. Here,
due to the page limit, we only consider the situations when
desired accuracies are set for rj = 90%, 95%, 99% and 99.9%
which we believe are sufficient. Table 2 displays the rela-
tionship between the desired accuracy and change rate of
the value of the objective function intuitively in 3D Road
Network data set when k ¼ 4.

The candidate clustering algorithms are terminated in
the iterative process once the change rate of the objective
function hi is below the set value hj, i.e., hi � hj. In a real-
world application, the clustering task will stop when it
reaches the desired accuracy.

5.3.2 Validation Process

To validate the performance of the proposed approach, we
mainly focus on two aspects: cost effectiveness and achieved
accuracy.

Cost-Effectiveness Validation. We run validation set for dif-
ferent data sets and obtain the total clustering completion
time Timefull for k-means and EM algorithms. Fig. 7 shows
the percentages of actual computation time Timeactual by
using our approach in different data sets. By setting the
desired accuracy, the candidate algorithms can stop at an
early point. After using Eq. (10), the average actual computa-
tion time is only at 23.74, 33.50, 56.57 and 81.06 percent of
the total time when desired accuracies are 90, 95, 99, and
99.9 percent respectively using the k-means algorithm. Simi-
larly, for EM algorithm, the average actual computation time
accounts for 9.4, 14.46, 20.73, and 32.78 percent respectively
of the total computation time. Since the cloud computation
cost is directly related to computation time, both k-means
and EM algorithms can achieve high cost effectiveness in the
clustering process in the cloud using our approach.

Achieved Accuracy Validation. In the experiment, we record
the expected stop point for different desired accuracies and
calculate the real achieved accuracies. From Tables 3 and 4,
we can see that the average achieved accuracies are 92.09,
95.47, 98.50 and 99.81 percent when corresponding desired
accuracies are 90, 95, 99, 99.9 percent respectively for the
k-means algorithm. Similarly, for the EM algorithm, the
average achieved accuracies are 90.24, 96.08, 99.11 and
99.76 percent respectively with the same desired accuracy.
The numbers in parentheses represent the standard devia-
tions that are generated by different groups for the data set
in the clustering process. Figs. 8a and 8b are the boxplots
of desired accuracy and achieved accuracy in one group
of SpaceNet validation set. In the boxplots, the red horizontal
lines indicate the achieved median accuracy and the
red crosses are the outliers. Blue rectangles show the 25-
75 percent percentiles of the achieved accuracy. It clearly

Fig. 5. The clustering accuracy over computation time.

Fig. 6. The regression model in training set (3D Network Road k=4).

TABLE 2
The Relation Between Accuracy and Change Rate

of Objective Functions in K-Means and EM

Desired Accuracy 90% 95% 99% 99.9%

hj (k-means) 1.83e-2 4.60e-3 1.83e-4 1.83e-6
hj (EM) 1.05e-4 3.44e-5 3.98e-6 3.33e-7
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shows that the average of actual achieved accuracy is very
close to the desired accuracy for both algorithms. The stan-
dard deviation is small especially when desired accuracy
reaches 99 and 99.9 percent, which proves the high precision
of the quadratic polynomial regression in the experiment.
When required accuracy is 90 and 95 percent, the achieved
accuracy of EM algorithm has larger variation than that of k-
means algorithm, whichmeans k-means has better goodness
of fit of the regression model than EM algorithm (corre-
sponding to Fig. 6b). To sum up, k-means is more stable in
achieved accuracy than EM in which more anomalies and
larger variation can be observed.

5.4 Discussion

From the experiments, we can draw three main conclusions:
1) the higher the desired accuracy, the longer the computation
time (i.e., the less the saved time). Users can save much more
moneywith lower but sufficient accuracy (such as 99 percent)
by using our proposed approach; 2) The performance of cost
effectiveness varies with the data sets. It is undoubtedly that
our approach can achieve cost effectiveness for different data
sets and can be applied in broader fields; 3) The performance
of cost effectiveness varies in different clustering techniques.
Compared with the k-means algorithm, though the EM algo-
rithm has higher percentages of time-saving with our

Fig. 7. The percentage of computation time with different desired accura-
cies by using k-means and EM.

TABLE 3
Achieved Accuracy for K-Means

Dataset / k
Desired Accuracy (Standard Deviation)

>90% >95% >99% >99.9%

3D_Road / 4 91.67%
(0.1670)

95.84%
(0.0094)

99.14%
(0.0040)

99.93%
(0.0015)

3D_Road / 8 90.92%
(0.0207)

94.33%
(0.0278)

97.78%
(0.0226)

99.77%
(0.0059)

Skin_Seg / 2 91.79%
(0.0068)

96.86%
(0.0050)

98.87%
(0.0036)

99.75%
(0.0013)

Poker_Hand / 10 94.00%
(0.0235)

95.58%
(0.0240)

98.09%
(0.0211)

99.80%
(0.0061)

SpaceNet / 6 92.05%
(0.0349)

94.75%
(0.0341)

98.64%
(0.0098)

99.79%
(0.0036)

Average 92.09% 95.47% 98.50% 99.81%

TABLE 4
Acheived Accuracy for EM

Dataset / k
Desired Accuracy (Standard Deviation)

>90% >95% >99% >99.9%

3D_Road / 4 90.71%
(0.1599)

95.16%
(0.0551)

98.07%
(0.0310)

99.63%
(0.0015)

3D_Road / 8 91.67%
(0.0467)

95.84%
(0.0094)

99.14%
(0.0040)

99.93%
(0.0015)

Skin_Seg / 2 91.15%
(0.1138)

99.93%
(0.0004)

99.97%
(0.0003)

99.99%
(0.0002)

Poker_Hand / 10 88.53%
(0.0711)

94.67%
(0.0505)

98.17%
(0.0297)

99.31%
(0.0168)

SpaceNet / 6 89.12%
(0.0492)

94.81%
(0.0384)

99.24%
(0.0181)

99.95%
(0.0006)

Average 90.24% 96.08% 99.11% 99.76%

Fig. 8. The box plots of desired accuracy and achieved accuracy.
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approach, it normally takes much longer time to converge
than k-means as illustrated in Fig. 5. Therefore, the actual
computation time of k-means algorithm is usually less than
the EM algorithm due to its rapid convergence. In real-world
applications, different clustering techniques have different
application scenarios, it is up to the users to decide which
clustering algorithm to adopted.With our approach, they can
all achieve cost effectiveness to various degrees.

For example, in the case studies with the much more effi-
cient k-means algorithm (see Fig. 5 for efficiency), we find
that achieving 99 percent accuracy needs 47.71-71.14 percent
computation cost of 100 percent accuracy while the less effi-
cient EM algorithm needs 16.69-32.04 percent of the total
computation cost. More specifically, for the SpaceNet data
set, the training process for 100 remote sensing images (using
the k-means algorithm) took 1,169.46 seconds and was only
computed once. In Section 2.1, we presented the California
land use statistics as example for 423,970 km2 land, which
need approximately 2:567� 107 partitioned remote sensing
images (438� 406 pixels) of each covering a 16; 520:74m2

land. With our approach, the saved computation time is
approximately 19,256.73 hours when the desired accuracy is
99 percent. According to the Amazon EC2 pricing [15], if we
runm5.large virtual machine instances, the saved cloud com-
putation cost amounts to $4,082.43 for California with the
total computation cost of $14,145.63. Apparently, the training
cost ($0.039) is negligible to thewhole computation cost.

In real-world applications, the training process is per-
formed once and when it is completed, we can use the regres-
sion model many times for the same dataset. Therefore, the
training cost can be neglected compared to the huge saved
cost. For example, we can use the same regression model to
conduct the whole United States land use statistics, which can
save huge computation cost of up to $94,687.49 in each use.

5.5 Threats to Validity

In this section, some key threats to the validity will be dis-
cussed as follows.

Threats to Construct Validity. The main threat to the con-
struct validity is the adopted metric to evaluate the accuracy
of every intermediate partition during the clustering iterative
process. In the paper, we use the Rand Index as the adopted
metric. As introduced in Section 3.2, the Rand Index relies on
the final partition in the clustering and it is an external cluster-
ing index. In most clustering algorithms, the evaluation crite-
ria are divided into internal and external clustering indices.
The internal evaluation criterion is to evaluate the goodness of
a data partition without prior knowledge from the data sets,
which includes Compactness (CP), Separation (SP), Davies-
Bouldin Index (DB), DunnValidity Index (DVI), etc. [32]. And
the external evaluation criterion is to assess how accurately a
clustering technique partitions the data relative to their correct
class labels. In real-world clustering, it is difficult and imprac-
tical to retrieve the correct class labels. Thus, the Rand Index is
not the usual choice for the real world big data clustering.
However, this threat to validity is minimal because our objec-
tive is to explore and demonstrate how to stop a clustering
process at some point to achieve high cost-effectiveness.
Although the Rand Index calculates the relative accuracy,
given it relies on the final partition in clustering, it can accu-
rately evaluate how close an intermediate partition to the final

partition in the training process while internal indices might
not be consistently correlatedwith Rand Index.

Threats to Conclusion Validity. The central threat to the
conclusion validity is the reliability of the final partition of
the clustering iterative process as the optimal partition.
Since the k-means and EM algorithms do not guarantee a
global optimum, they attempt to approximate the optimal
partition. Therefore, the final partition of the clustering
result is not necessarily the optimal partition. So, Fig. 5 do
not necessarily demonstrate how the intermediate partition
approaches the real optimal partition. Nevertheless, we are
able to consider the final partition adequately reliable for
demonstrating the long tail phenomenon in the clustering
process because in the optimal situations, the k-means and
EM algorithms are likely to take more time and result in a
more significant long tail phenomenon. Thus, the threat to
the conclusion validity exists but is not significant.

Threats to External Validity. The main threat to the external
validity in our research is the representativeness of the data
sets used in the experiments. In the experiments, we used the
3D Road Network, Skin Segmentation, Poker Hand and
SpaceNet data sets. All the data sets are real-world data sets.
They may have their own characteristics and thus do not
comprehensively present all data sets. However, the main
features are familiar such as the negative relationship
between change rate of the value of the objective function
and the clustering accuracy. In the meantime, the high cost-
effectiveness and small standard deviation in all given data
sets indicate that the threat to the external validity isminimal.

Threats to Internal Validity. The crucial threat to internal
validity is the selection of the regression model. In the experi-
ments, we found that the quadratic polynomial regression
model shows the best result of R-squared and SSE for all given
data sets. However, it is impossible to exhaust every data set
in the real world to ensure if the quadratic polynomial model
is the best regression model. For instance, the regression
model may be one degree, three-degree polynomial models
or even non-polynomial model such as the exponential model
in some special data sets. Nevertheless, different types of
regression models can also be applied in our approach to
achieve cost-effectiveness for the big data clustering in the
cloud. Thus, the threat to the internal validity isminimal.

6 RELATED WORK

With the development of the pay-as-you-go model, the IT
resources are usually provisioned and utilized by cloud com-
puting. Since themajority of advantages offered by cloud com-
puting are built around the flexibility of the pay-as-you-go cost
model, cost-effectiveness has become a critical issue in cloud
computing filed. With the improving cloud services from the
cloud vendors, many scientists focus on the performance as
well as cost-effectiveness of public cloud services. Intensive
research work has been made on the cost-effective computa-
tion in the cloud environment. A Semi-Elastic Cluster (SEC)
computing model [35] has been proposed for organizations to
reserve and dynamically resize a virtual cloud-based cluster.
The race-driven results show that such a model has a 61 per-
cent percent cost saving than individual users acquiring and
managing cloud resources without causing longer average job
wait time. And a new MapReduce cloud service model Cura
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was presented to provide a cost-effective solution to efficiently
handleMapReduce production resources,which implemented
a globally efficient resource allocation scheme that significantly
reduces the resource usage cost in the cloud.A new task sched-
uler Flutter [36], was designed and implemented which
reduces both the completion time and network cost of big data
processing jobs across geographically distributed data centers.

Cost-effectiveness of scientific computing applications has
also been studied by Berriman et al. using Amazons EC2 [37].
They compared Amazons EC2 with the Abe high-performance
cluster anddrew the conclusion that theAmazonEC2offers bet-
ter performance and value for processor- and memory-limited
applications than for I/O-bound applications. A similar study
was conducted by Carlyles team to compare the computation
cost of high-performance in traditional HPC environments and
inAmazons EC2 environments, using PurdueUniversitysHPC
community cluster program [38]. Their research showed that an
in-house cluster is more cost-effective when the organization
having sufficient demand that fully utilizes the cluster or having
an IT department capable of sustaining IT infrastructure or hav-
ing cyber-enabled research as a priority. These features of in-
house clusters, in fact confirm the flexibility and cost effective-
ness of running computation-intensive applications in the com-
mercial clouds. Wang et al. proposed a stochastic multi-tenant
framework for investigating the response time of cloud services
as a stochastic metric with a general probability distribution
[39]. In a similar study, by comparing between the scaling out
strategies with the scaling up strategies, the performance of
Amazons cloud services was tested with five benchmark appli-
cations and scaling up is foundmore cost-effective in sustaining
heavier workload [40]. To find theminimum cost of storing and
regenerating datasets in multiple clouds, a novel algorithmwas
proposed which achieved the best trade-off among computa-
tion, storage and bandwidth cost in the cloud [41]. Jawad et al.
[42] proposed a smart power management system to minimize
the operation cost of data center, which coordinates the data
center workload, diesel generators, battery bank, renewable
power, real-time trade electricity price and day-ahead power
market to reduce consumption cost.

The current research for cloud computing shows the
popularity of running computation-intensive applications
in the cloud, which describes a general overview about cost
effectiveness for big data clustering in the cloud through a
comparison between the cloud environment and a tradi-
tional cluster environment. Additionally, to save cost in the
cloud, it is also critical for clustering algorithms to improve
their efficiency and to reduce processing time. To deal with
the problem, many approaches have been proposed. To
optimize the k-means algorithm, how to select k appropri-
ate initial centers is a key issue and there have been many
pieces of work on this matter [43], [44], [45]. For the EM
algorithm, Liu et al. used the parameter expansion to accel-
erate EM [46]. However, such approaches rarely considered
the economic efficiency. Up until now, none of the existing
research has considered the k-means or EM algorithm from
the cost-effective perspective about cost-effective big data
clustering in the cloud. He et al. found the phenomenon
that achieving 99 percent accuracy of k-means only needs
an average of 20%+ of the total computation time [10] but
they did not offer a solution for terminating the clustering
algorithm at an early point with the desired accuracy.

In our research, from a different and important perspec-
tive, we take a look at the issue of cost-effectiveness how to
achieve a sufficiently satisfactory accuracy at a relatively
small proportion of the total cost of achieving 100 percent
accuracy by stopping the clustering process at an early point
before its completion.

7 CONCLUSION AND FUTURE WORK

In this research, we proposed a novel approach for cutting
the unnecessary long tail to achieve cost-effective big data
clustering in the cloud. Users can achieve sufficiently satis-
factory accuracies at the lowest possible costs by setting their
desired accuracies. With our approach, both widely used k-
means and EM algorithms show high cost effectiveness in
the clustering process. For the k-means algorithm, achieving
99 percent accuracy only needs 47.71-71.14 percent of the
computation time for achieving a 100 percent accuracy. And
for the EM algorithm, achieving a 99 percent accuracy needs
16.69-32.04 percent. By applying our proposed approach, the
government will save up to $94,687.49 for the United States
land use statistics for each run.

To the best of our knowledge, this is the very first paper
to achieve cost effectiveness for big data clustering in the
cloud by cutting the unnecessary long tail. This work
presents a significant first step toward cost-effective cluster-
ing in the cloud. As a contribution, our approach can be eas-
ily deployed in various fields which need to clustering big
data with limited budget.

Since k-means and EM algorithms may not be suitable
for time-series data and spatiotemporal data, in the future,
we plan to investigate the cost effectiveness of the clustering
algorithms for those data types. In addition, it is also valu-
able to explore the relationship between the achieved accu-
racy and acquired accuracy, and control the margin of error
by artificial setting.

APPENDIX A

The notations used in this paper are shown in Table A.1.

TABLE A.1
Table of Notations

Notation Definition

D A given data set to be partitioned

x A feature point with dimensions

k The number of clusters

n The number of iterations in the clustering process

ci; cj The cluster centers

C The cluster centers set

Ci The set of data points that are closer to ci than to cj for all j 6¼ i

Pi The clustering partition at the ith iteration.

RandðPi; PjÞ The rand index of two partitions Pi; Pj

ri; rj The clustering accuracy at the th iteration

J The objective function of clustering algorithm

Ji The value of the objective function at the ith iteration

hi; hj The change rate of objective function at the i; jth iteration

Timecomp The total computation time

Timetrain The computation time for training

Timeactual The computation time when accuracy reaches users desired

accuracy

Timefull The computation time when clustering reaches 100% accuracy

Costeffective The cost effectiveness percentage
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